scispace - formally typeset
Search or ask a question
Institution

École Polytechnique Fédérale de Lausanne

FacilityLausanne, Switzerland
About: École Polytechnique Fédérale de Lausanne is a facility organization based out in Lausanne, Switzerland. It is known for research contribution in the topics: Population & Catalysis. The organization has 44041 authors who have published 98296 publications receiving 4372092 citations. The organization is also known as: EPFL & ETHL.


Papers
More filters
Journal ArticleDOI
11 Aug 2016-Nature
TL;DR: A large, osmotically induced current is observed produced from a salt gradient with an estimated power density of up to 106 watts per square metre—a current that can be attributed mainly to the atomically thin membrane of MoS2, thus demonstrating a self-powered nanosystem.
Abstract: Osmotic power generation is a promising renewable energy source. This study demonstrates the use of single-layer molybdenum disulfide (MoS2) nanopores as osmotic nanogenerators. The transport of water through a membrane scales inversely with membrane thickness, so atomically thin materials should provide the ideal medium to host the nanopores in an osmotic power generator. Aleksandra Radenovic and colleagues produced nanopores in two-dimensional MoS2 and, using a salt gradient across a single nanopore, generated a power output per area orders of magnitude greater than that previously reported for nanotubes. They also show that a chemical potential gradient across a single nanopore in MoS2 can generate enough power to operate a single-layer MoS2 transistor.

758 citations

Journal ArticleDOI
19 Feb 2004-Nature
TL;DR: It is proposed that aftershocks of large earthquakes in such geologic environments may be driven by the coseismic release of trapped, high-pressure fluids propagating through damaged zones created by the mainshock, which may provide a link between earthquakes, aftershock, crust/mantle degassing and earthquake-triggered large-scale fluid flow.
Abstract: In northern Italy in 1997, two earthquakes of magnitudes 5.7 and 6 (separated by nine hours) marked the beginning of a sequence that lasted more than 30 days, with thousands of aftershocks including four additional events with magnitudes between 5 and 6. This normal-faulting sequence is not well explained with models of elastic stress transfer, particularly the persistence of hanging-wall seismicity that included two events with magnitudes greater than 5. Here we show that this sequence may have been driven by a fluid pressure pulse generated from the coseismic release of a known deep source of trapped high-pressure carbon dioxide (CO2). We find a strong correlation between the high-pressure front and the aftershock hypocentres over a two-week period, using precise hypocentre locations and a simple model of nonlinear diffusion. The triggering amplitude (10-20 MPa) of the pressure pulse overwhelms the typical (0.1-0.2 MPa) range from stress changes in the usual stress triggering models. We propose that aftershocks of large earthquakes in such geologic environments may be driven by the coseismic release of trapped, high-pressure fluids propagating through damaged zones created by the mainshock. This may provide a link between earthquakes, aftershocks, crust/mantle degassing and earthquake-triggered large-scale fluid flow.

757 citations

Book
01 Jan 2010
TL;DR: In this article, the authors present a model for wireless ad-hoc networks with a view of 4G wireless: Imperatives and challenges. But the authors do not discuss the security aspects of ad hoc networks.
Abstract: Contributors.Preface.1. Mobile Ad-Hoc networking with a View of 4G Wireless: Imperatives and Challenges (J. Liu & I. Chlamtac).2. Off-the-Shelf Enables of Ad Hoc Networks (G. Zaruba & S. Das).3. IEEE 802.11 in Ad Hoc Networks: Protocols, Performance and Open Issues (G. Anastasi, et al.).4. Scatternet Formation in Bluetooth Networks (S. Basagni, et al.).5. Antenna Beamforming and Power Control for Ad Hoc Networks (R. Ramanathan).6. Topology Control in Wireless Ad Hoc Networks (X. Li).7. Broadcasting and Activity Scheduling in Ad Hoc Networks (I. Stojmenovic & J. Wu).8. Location Discovery (A. Savvidesn & M. Srivastava).9. Mobile Ad Hoc Networks (MANETs): Routing Technology for Dynamic, Wireless Networking (J. Macker & M. Corson).10. Routing Approaches in Mobile Ad Hoc Networks (E. Belding-Royer).11. Energy-Efficient Communication in Ad Hoc Wireless Networks (L. Feeney).12. Ad Hoc Networks Security (P. Michiardi & R. Molva).13. Self-Organized and Cooperative Ad Hoc Networking (S. Giordano & A. Urpi).14. Simulation and Modeling of Wireless, Mobile, and Ad Hoc Networks (A. Boukerche & L. Bononi).15. Modeling Cross-Layering Interaction Using Inverse Optimization (V. Syrotiuk & A.Bikki).16. Algorithmic Challenges in Ad Hoc Networks (A. Farago).Index.About the Editors.

757 citations

Journal ArticleDOI
TL;DR: In this article, a single core-shell p-i-n junction GaAs nanowire solar cell grown on a silicon substrate was shown to achieve a short-circuit current of 180 mA cm-2 at 1 sun illumination, more than one order of magnitude higher than that predicted from the Lambert-Beer law.
Abstract: Light management is of great importance in photovoltaic cells, as it determines the fraction of incident light entering the device. An optimal p–n junction combined with optimal light absorption can lead to a solar cell efficiency above the Shockley–Queisser limit. Here, we show how this is possible by studying photocurrent generation for a single core–shell p–i–n junction GaAs nanowire solar cell grown on a silicon substrate. At 1 sun illumination, a short-circuit current of 180 mA cm –2 is obtained, which is more than one order of magnitude higher than that predicted from the Lambert–Beer law. The enhanced light absorption is shown to be due to a light-concentrating property of the standing nanowire, as shown by photocurrent maps of the device. The results imply new limits for the maximum efficiency obtainable with III–V based nanowire solar cells under 1 sun illumination.

756 citations

Journal ArticleDOI
TL;DR: In this paper, the scaling limit approach of statistical physics has been used to determine the achievable bit rate per source-destination pair in a wireless network of n randomly located nodes, where the network operation strategy corresponds to the transition region between order and disorder of an underlying percolation model.
Abstract: An achievable bit rate per source-destination pair in a wireless network of n randomly located nodes is determined adopting the scaling limit approach of statistical physics It is shown that randomly scattered nodes can achieve, with high probability, the same 1/radicn transmission rate of arbitrarily located nodes This contrasts with previous results suggesting that a 1/radicnlogn reduced rate is the price to pay for the randomness due to the location of the nodes The network operation strategy to achieve the result corresponds to the transition region between order and disorder of an underlying percolation model If nodes are allowed to transmit over large distances, then paths of connected nodes that cross the entire network area can be easily found, but these generate excessive interference If nodes transmit over short distances, then such crossing paths do not exist Percolation theory ensures that crossing paths form in the transition region between these two extreme scenarios Nodes along these paths are used as a backbone, relaying data for other nodes, and can transport the total amount of information generated by all the sources A lower bound on the achievable bit rate is then obtained by performing pairwise coding and decoding at each hop along the paths, and using a time division multiple access scheme

755 citations


Authors

Showing all 44420 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Ruedi Aebersold182879141881
Eliezer Masliah170982127818
Richard H. Friend1691182140032
G. A. Cowan1592353172594
Ian A. Wilson15897198221
Johan Auwerx15865395779
Menachem Elimelech15754795285
A. Artamonov1501858119791
Melody A. Swartz1481304103753
Henry J. Snaith146511123155
Kurt Wüthrich143739103253
Richard S. J. Frackowiak142309100726
Jean-Paul Kneib13880589287
Kevin J. Tracey13856182791
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

98% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022704
20215,249
20205,644
20195,432
20185,094