scispace - formally typeset
Search or ask a question
Institution

École Polytechnique Fédérale de Lausanne

FacilityLausanne, Switzerland
About: École Polytechnique Fédérale de Lausanne is a facility organization based out in Lausanne, Switzerland. It is known for research contribution in the topics: Population & Catalysis. The organization has 44041 authors who have published 98296 publications receiving 4372092 citations. The organization is also known as: EPFL & ETHL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the performance characteristics, the stability and the mass-transfer effects in a photoelectrochemical regenerative device, as the latter is influenced and can even be limited by local concentration and mass-transport of the electroactive redox mediator species in the electrolyte phase.
Abstract: Room temperature molten salt systems based on methyl-hexyl-imidazolium iodide (MHImI) have been used to scrutinize the performance characteristics, the stability and the mass-transfer effects in a photoelectrochemical regenerative device, as the latter is influenced and can even be limited by local concentration and mass-transport of the electroactive redox mediator species in the electrolyte phase. These salts appear to afford particular advantages over organic liquids as solvents for solar cell electrolytes. Cell performance showed outstanding stability, with an estimated sensitizer turnover in excess of 50 million. An investigation has been carried out on the physical-electrochemical properties of MHImI and its mixtures with organic solvents such as n-methyl-oxazolidinone, acetonitrile and with other lower viscosity molten salts such as methyl-butyl-imidazolium triflate. The repercussions of these properties on solar cells is described experimentally by the performance of practical application devices. Simulation models of mass transport in the nanocrystalline solar cell help illustrate operational aspects such as concentration profiles, limiting currents, anticipated mass-transfer overpotential as a function of current density, and they help to make projections as to how the properties of molten salt electrolytes can be better exploited toward this practical end.

710 citations

Journal ArticleDOI
07 Jan 2013-ACS Nano
TL;DR: Fast trapping of excitons by surface trap states was observed in monolayer and few-layer structures, pointing to the importance of controlling surface properties in atomically thin crystals such as MoS₂ along with controlling their dimensions.
Abstract: Femtosecond transient absorption spectroscopy and microscopy were employed to study exciton dynamics in suspended and Si3N4 substrate-supported monolayer and few-layer MoS2 2D crystals. Exciton dynamics for the monolayer and few-layer structures were found to be remarkably different from those of thick crystals when probed at energies near that of the lowest energy direct exciton (A exciton). The intraband relaxation rate was enhanced by more than 40 fold in the monolayer in comparison to that observed in the thick crystals, which we attributed to defect assisted scattering. Faster electron–hole recombination was found in monolayer and few-layer structures due to quantum confinement effects that lead to an indirect–direct band gap crossover. Nonradiative rather than radiative relaxation pathways dominate the dynamics in the monolayer and few-layer MoS2. Fast trapping of excitons by surface trap states was observed in monolayer and few-layer structures, pointing to the importance of controlling surface pro...

709 citations

Journal ArticleDOI
TL;DR: It is shown that, despite experimental imperfections, optical phase conjugation can force a transmitted light field to retrace its trajectory through a biological target and recover the original light field.
Abstract: Elastic optical scattering, the dominant light-interaction process in biological tissues, prevents tissues from being transparent. Although scattering may appear stochastic, it is in fact deterministic in nature. We show that, despite experimental imperfections, optical phase conjugation (λ = 532 nm) can force a transmitted light field to retrace its trajectory through a biological target and recover the original light field. For a 0.69-mm-thick chicken breast tissue section, we can enhance point-source light return by a factor of ~5 x 10^3 and achieve a light transmission enhancement factor of 3.8 within a collection angle of 29°. Additionally, we find that the reconstruction's quality, measured by the width of the reconstructed point source, is independent of tissue thickness (up to a thickness of 0.69 mm). This phenomenon may be used to enhance light transmission through tissue, enable measurement of small tissue movements, and form the basis of new tissue imaging techniques.

708 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the considerable progress that has been made in homogeneous catalysis for these critical reactions, namely, the hygienic reaction, and describe a review of the most relevant work in this area.
Abstract: Hydrogen gas is a storable form of chemical energy that could complement intermittent renewable energy conversion. One of the main disadvantages of hydrogen gas arises from its low density, and therefore, efficient handling and storage methods are key factors that need to be addressed to realize a hydrogen-based economy. Storage systems based on liquids, in particular, formic acid and alcohols, are highly attractive hydrogen carriers as they can be made from CO2 or other renewable materials, they can be used in stationary power storage units such as hydrogen filling stations, and they can be used directly as transportation fuels. However, to bring about a paradigm change in our energy infrastructure, efficient catalytic processes that release the hydrogen from these molecules, as well as catalysts that regenerate these molecules from CO2 and hydrogen, are required. In this review, we describe the considerable progress that has been made in homogeneous catalysis for these critical reactions, namely, the hy...

708 citations

Journal ArticleDOI
TL;DR: Results show that these ruthenium(II)-arene complexes can reduce the growth of lung metastases in CBA mice bearing the MCa mammary carcinoma in the absence of a corresponding action at the site of primary tumor growth.
Abstract: The antitumor activity of the organometallic ruthenium(II)−arene complexes, RuCl2(η6-arene)(PTA), (arene = p-cymene, toluene, benzene, benzo-15-crown-5, 1-ethylbenzene-2,3-dimethylimidazolium tetrafluoroborate, ethyl benzoate, hexamethylbenzene; PTA = 1,3,5-triaza-7-phosphaadamantane), abbreviated RAPTA, has been evaluated. In vitro biological experiments demonstrate that these compounds are active toward the TS/A mouse adenocarcinoma cancer cell line whereas cytotoxicity on the HBL-100 human mammary (nontumor) cell line was not observed at concentrations up to 0.3 mM, which indicates selectivity of these ruthenium(II)−arene complexes to cancer cells. Analogues of the RAPTA compounds, in which the PTA ligand is methylated, have also been prepared, and these prove to be cytotoxic toward both cell lines. RAPTA-C and the benzene analogue RAPTA-B were selected for in vivo experiments to evaluate their anticancer and antimetastatic activity. The results show that these complexes can reduce the growth of lung m...

706 citations


Authors

Showing all 44420 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Ruedi Aebersold182879141881
Eliezer Masliah170982127818
Richard H. Friend1691182140032
G. A. Cowan1592353172594
Ian A. Wilson15897198221
Johan Auwerx15865395779
Menachem Elimelech15754795285
A. Artamonov1501858119791
Melody A. Swartz1481304103753
Henry J. Snaith146511123155
Kurt Wüthrich143739103253
Richard S. J. Frackowiak142309100726
Jean-Paul Kneib13880589287
Kevin J. Tracey13856182791
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

98% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022704
20215,249
20205,644
20195,432
20185,094