scispace - formally typeset
Search or ask a question
Institution

École Polytechnique Fédérale de Lausanne

FacilityLausanne, Switzerland
About: École Polytechnique Fédérale de Lausanne is a facility organization based out in Lausanne, Switzerland. It is known for research contribution in the topics: Population & Catalysis. The organization has 44041 authors who have published 98296 publications receiving 4372092 citations. The organization is also known as: EPFL & ETHL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of recent advances in this field is presented, focusing on processes governing inorganic P release from the solid phase to the soil solution and its measurement using two dynamic approaches: isotope exchange kinetics and desorption with an infinite sink.
Abstract: Phosphorus losses from agricultural soil to water bodies are mainly related to the excessive accumulation of available P in soil as a result of long-term inputs of fertilizer P. Since P is a nonrenewable resource, there is a need to develop agricultural systems based on maximum P use efficiency with minimal adverse environmental impacts. This requires detailed understanding of the processes that govern the availability of P in soil, and this paper reviews recent advances in this field. The first part of the review is dedicated to the understanding of processes governing inorganic P release from the solid phase to the soil solution and its measurement using two dynamic approaches: isotope exchange kinetics and desorption of inorganic P with an infinite sink. The second part deals with biologically driven processes. Improved understanding of the abiotic and biotic processes involved in P cycling and availability will be useful in the development of effective strategies to reduce P losses from agricultural soils, which will include matching crop needs with soil P release and the development of appropriate remediation techniques to reduce P availability in high P status soils.

534 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of different chemical parameters on photocatalytic inactivation of E. coli K12 was discussed, and it was shown that the presence of some inorganic ions (0.2 mmol/l) like HCO3-, HPO42-, Cl-, NO3- and SO42- to the suspension affects the sensitivity of bacteria to sunlight in the presence and in absence of TiO2.
Abstract: The effect of different chemical parameters on photocatalytic inactivation of E. coli K12 is discussed. Illumination was produced by a solar lamp and suspended TiO2 P-25 Degussa was used as catalyst. Modifications of initial pH between 4.0 and 9.0 do not affect the inactivation rate in the absence or presence of the catalyst. Addition of H2O2 affects positively the E. coli inactivation rate of both photolytic (only light) and photocatalytic (light Plus TiO2) disinfection processes. Addition of some inorganic ions (0.2 mmol/l) like HCO3-, HPO42-, Cl-. NO3- and SO42- to the suspension affects the sensitivity of bacteria to sunlight in the presence and in absence of TiO2. Addition of HCO3- and HPO42- resulted in a meaningful decrease in photocatalytic bactericidal effect while it was noted a weak influence of Cl-, SO42- and NO3-. The effect of counter ion (Na+ and K-) is not negligible and can modify the photocatalytic process as the anions. Bacteria inactivation was affected even at low concentrations (0.2 mmol/l) of SO42- and HCO3- but the same concentration does not affect the resorcinol photodegradation, suggesting that disinfection is more sensitive to the presence of natural anions than photocatalytic degradation of organic compounds. The presence of organic substances naturally present in water like dihydroxybenzenes isomers shows a negative effect on photocatalytic disinfection. The effect of a mixture of chemical substances on photocatalytic disinfection was also studied by adding to the bacterial suspension nutrient broth, phosphate buffer and tap water. (C) 2004 Elsevier B.V. All rights reserved.

534 citations

Journal ArticleDOI
TL;DR: It is revealed that ZFP57, its cofactor KAP1, and associated effectors bind selectively to the H3K9me3-bearing, DNA-methylated allele of ICRs in ES cells, and a general mechanism for the protection of specific loci against the wave of DNA demethylation that affects the mammalian genome during early embryogenesis is suggested.

534 citations

Journal ArticleDOI
TL;DR: The Consultation reached a general consensus that universal salt iodisation (USI) remains the key strategy to eliminate iodine deficiency disorders in pregnant and lactating women, and in children less than 2-years-old.
Abstract: The Consultation reached a general consensus on several important issues. First, that universal salt iodisation‡ (USI) remains the key strategy to eliminate iodine deficiency disorders. Second, that where USI has been effective for at least 2 years, with salt adequately iodised and consumed by more than 90% of the population 1 , it can be reasonably expected that the iodine needs of women of child-bearing age and pregnant and lactating women are covered by their diet, and that the iodine stored in the thyroid gland is sufficient to ensure adequate hormone synthesis and secretion. Third, that iodised salt may not provide enough iodine to meet a child’s needs during complementary feeding, especially if the mother is only marginally iodine sufficient, unless complementary foods are fortified with iodine. It may be necessary therefore to give additional iodine to makesure that requirements are met until such time as the child starts to eat the normal family food. Finally, there was consensus that monitoring of both iodised salt quality and iodine nutrition are important to ensure that an optimal state of iodine nutrition is reached and then sustained. The Consultation made several specific recommendations concerning requirements, indicators and strategies to control iodine deficiency disorders in pregnant and lactating women, and in children less than 2-years-old.

534 citations

Journal ArticleDOI
TL;DR: A ZNO compact layer formed by electrodeposition and ZnO nanorods grown by chemical bath deposition allow the processing of low-temperature, solution based and flexible solid state perovskite CH3NH3PbI3 solar cells.

534 citations


Authors

Showing all 44420 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Ruedi Aebersold182879141881
Eliezer Masliah170982127818
Richard H. Friend1691182140032
G. A. Cowan1592353172594
Ian A. Wilson15897198221
Johan Auwerx15865395779
Menachem Elimelech15754795285
A. Artamonov1501858119791
Melody A. Swartz1481304103753
Henry J. Snaith146511123155
Kurt Wüthrich143739103253
Richard S. J. Frackowiak142309100726
Jean-Paul Kneib13880589287
Kevin J. Tracey13856182791
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

98% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

96% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023234
2022704
20215,249
20205,644
20195,432
20185,094