scispace - formally typeset
Search or ask a question
Institution

Motilal Nehru National Institute of Technology Allahabad

EducationAllahabad, Uttar Pradesh, India
About: Motilal Nehru National Institute of Technology Allahabad is a education organization based out in Allahabad, Uttar Pradesh, India. It is known for research contribution in the topics: Computer science & Control theory. The organization has 2475 authors who have published 5067 publications receiving 61891 citations. The organization is also known as: NIT Allahabad & Motilal Nehru Regional Engineering College.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the batch kinetics of arsenic(V) on a novel media developed by coating BaSO4 and Fe on quartz sand, known as sulfate modified ironoxide coated sand (SMIOCS), was investigated.
Abstract: The batch kinetics of arsenic(V) on a novel media developed by coating BaSO4 and Fe on quartz sand, known as sulfate modified iron‐oxide coated sand (SMIOCS), was investigated. Batch rate data were analyzed using active available site and chemical reaction rate models. The batch kinetic data were a better fit on an active, available site model as compared to a chemical reaction rate model. The media was characterized for certain chemical properties and surface area. The media showed alkali resistance with the presence of iron, barium, and sulfur on the surface. The Langmuir and Freundlich isotherm equations could be used to describe the partitioning behavior of system at different pH. The removal of As(V) on SMIOCS was pH dependent and maximum removal was observed in acidic pH range. The variation in ionic strength and chloride (Cl−) concentration in the solute do not play a significant role in As(V) removal efficiency but major anions showed some reduction in As(V) removal efficiency. A very sma...

66 citations

Journal ArticleDOI
TL;DR: A review of the available information about SARS-CoV-2 and the corresponding disease (also known as COVID-19), with a multi-disciplinary approach is presented in this article.

66 citations

Journal ArticleDOI
TL;DR: An automated early diabetic retinopathy detection scheme from color fundus images through improved segmentation strategies for optic disc and blood vessels and Radial basis function neural network is used for classification of the diseases.
Abstract: This paper presents an automated early diabetic retinopathy detection scheme from color fundus images through improved segmentation strategies for optic disc and blood vessels. The red lesions, microaneurysms and hemorrhages are the earliest signs of diabetic retinopathy. This paper essentially proposes improved techniques for microaneurysm as well as hemorrhages detection, which eventually contribute in the overall improvement in the early detection of diabetic retinopathy. The proposed method consists of five stages- pre-processing, detection of blood vessels, segmentation of optic disc, localization of fovea, feature extraction and classification. Mathematical morphology operation is used for pre-processing and blood vessel detection. Watershed transform is used for optic disc segmentation. The main contribution of this model is to propose an improved blood vessel and optic disc segmentation methods. Radial basis function neural network is used for classification of the diseases. The parameters of radial basis function neural network are trained by the features of microaneurysm and hemorrhages. The accuracy of the proposed algorithm is evaluated based on sensitivity and specificity, which are 87% and 93% respectively.

66 citations

Journal ArticleDOI
01 Jun 2014
TL;DR: In this paper, the mechanism of electrical discharge machining has been combined with the mechanisms of one or more other machining/physical/chemical processes to constitute the hybrid machining process.
Abstract: Electrical discharge machining is one of the widely used noncontact-type advanced machining processes in which material removal takes place due to melting and vaporization by thermal energy of electric sparks. Electrical discharge machining has the capability of machining difficult-to-cut materials such as superalloys, advanced ceramics, and composites with complex shapes at both macro- and micro-levels. But its application is limited to electrically conductive materials. Other limitations include low material removal rate, high tool wear rate, recast layer formation, and geometrical inaccuracy in the form of taper and overcut. To overcome such limitations, the mechanism of electrical discharge machining has been combined with the mechanism of one or more other machining/physical/chemical processes. The mechanism of two constituent processes may be applied simultaneously or sequentially to constitute the hybrid machining process. It has been found that the performance of hybrid machining processes is bett...

66 citations

Journal ArticleDOI
TL;DR: In this paper, a new advanced combined treatment technology has been investigated to control the total treatment cost of textile dye effluent using upflow anaerobic sludge blanket (UASB) reactor.

65 citations


Authors

Showing all 2547 results

NameH-indexPapersCitations
Santosh Kumar80119629391
Anoop Misra7038517301
Naresh Kumar66110620786
Munindar P. Singh6258020279
Arvind Agarwal5832512365
Mahendra Kumar542169170
Jay Singh513018655
Lalit Kumar4738111014
O.N. Srivastava4754810308
Avinash C. Pandey453017576
Sunil Gupta435188827
Rakesh Mishra415457385
Durgesh Kumar Tripathi371335937
Vandana Singh351904347
Prashant K. Sharma341743662
Network Information
Related Institutions (5)
National Institute of Technology, Rourkela
10.7K papers, 150.1K citations

94% related

Indian Institute of Technology Roorkee
21.4K papers, 419.9K citations

93% related

Indian Institute of Technology Delhi
26.9K papers, 503.8K citations

91% related

Birla Institute of Technology and Science
13.9K papers, 170K citations

91% related

Indian Institute of Technology Guwahati
17.1K papers, 257.3K citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202342
202284
2021728
2020587
2019532
2018423