scispace - formally typeset
Search or ask a question
Institution

Nanjing Tech University

EducationNanjing, China
About: Nanjing Tech University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Catalysis & Membrane. The organization has 21827 authors who have published 21794 publications receiving 364050 citations. The organization is also known as: Nangongda & Nánjīng Gōngyè Dàxúe.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new type of composite adsorbents was synthesized by incorporating monoethanol amine (MEA) into β-zeolite, and the results showed that the structure of zeolite was well preserved after MEA modification.

122 citations

Journal ArticleDOI
Xiao Ma1, Pengli Chen1, Ming Zhou1, Zhaoxiang Zhong1, Feng Zhang1, Weihong Xing1 
TL;DR: In this paper, a tight ultrafiltration (t-UF) ceramic membrane (MWCO 8800 Da) is proposed to fractionate dyes and mixed salts (NaCl/Na2SO4) for textile wastewater treatment.
Abstract: Commercial nanofiltration (NF) membranes have been used to separate dyes and salts in industry; however, NF membrane’s high rejection to divalent salts (ie, Na2SO4) leads to a reduction of salt recovery In this study, a tight ultrafiltration (t-UF) ceramic membrane (MWCO 8800 Da) is proposed to fractionate dyes and mixed salts (NaCl/Na2SO4) for textile wastewater treatment Performance of the t-UF ceramic membrane and DK polymeric membrane (from GE) has been compared regarding to permeability, retention of reactive dyes, and permeation of salts The t-UF ceramic membrane presents better permeability, competitive rejection of dye molecules (>98%), and reduced rejection of NaCl (<10%) and Na2SO4 (<30%) in comparison with DK membrane; the pure water permeability of t-UF membrane is at least 6 times that of DK membrane In particular, the operation parameters (TMP, temperature, and pH) and solution environment (concentration and charges) have been intensively evaluated for dye/dual-salts separation efficie

122 citations

Journal ArticleDOI
TL;DR: [*] Prof. C. R. Liao State Key Laboratory of Materials-Oriented chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology Nanjing 210009, Jiangsu (P.R. China)
Abstract: [*] Prof. Y. Wang, Prof. W. Xing, F. Li, L. Tong, Z. Chen, X. Liao, X. Liao State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology Nanjing 210009, Jiangsu (P. R. China) E-mail: yongwang@njut.edu.cn; xingwh@njut.edu.cn Fax: 0086-25-8317-2292 Dr. C. He College of Chemistry, Beijing Normal University Beijing, 100875 (P. R. China)

122 citations

Journal ArticleDOI
TL;DR: In this article, the authors constructed a model of a GO membrane using laminate nanochannels with aligned flexible multilayered GO sheets, on which functional groups were randomly distributed based on the Lerf-Klinowski model.
Abstract: Layer-by-layer assembled graphene oxide (GO) has been considered as a high-efficiency novel membrane material. However, its performance of water permeation and ion rejection remains largely unresolved. Herein we constructed a model of a GO membrane using laminate nanochannels with aligned flexible multilayered GO sheets, on which functional groups were randomly distributed based on the Lerf–Klinowski model. The water permeation and ion rejection in the flexible GO membranes with various pore widths and surface oxidization degrees were simulated. Our results indicate water flow rate in the GO nanochannels is significantly slowed, which is quantitatively equivalent with the prediction using the no-slip Poiseuille equation. The simulated results suggest the capillary channels within GO stacked laminated membranes might not always work as the major flow route for water to permeate. It is observed that confined water structure becomes more disordered and loose within the corrugated GO nanochannels. The interfa...

121 citations

Journal ArticleDOI
TL;DR: In this paper, a dense array of CdS-ZnS core-shell nanorods was synthesized through a simple two-step aerosol assisted chemical vapor deposition (AACVD) method.
Abstract: A dense array of CdS–ZnS core–shell nanorods film (1D vertically aligned) was synthesized through a simple two-step aerosol assisted chemical vapor deposition (AACVD) method. In this configuration, a ZnS nanocrystal (protective shell) was grown in situ on a CdS core, forming nanorod heterostructures to restrain the photo-corrosion and enhance the charge separation and transportation efficiencies of CdS cores. The as-prepared CdS–ZnS films showed elevated photoelectrochemical (PEC) performance (over four times than that of uncoated CdS arrays) with a significant photocurrent density of 7.8 mA cm−2 (0 V, vs. SCE) and incident photon to electron conversion efficiency (IPCE) values above 35% under AM 1.5G irradiation. Moreover, the stability of the photoelectrode was tested for over 16 min. These results suggest that the dense array of CdS–ZnS core–shell heterostructures provides a unique spatial distribution of the photo-excited charge carriers, as well as stable anti-photo-corrosion ability, and therefore is promising to be a photoelectrode in PEC hydrogen generation from water.

121 citations


Authors

Showing all 22047 results

NameH-indexPapersCitations
Yi Chen2174342293080
Richard H. Friend1691182140032
Hua Zhang1631503116769
Wei Huang139241793522
Jian Zhou128300791402
Haiyan Wang119167486091
Jian Liu117209073156
Lain-Jong Li11362758035
Hong Wang110163351811
Jun-Jie Zhu10375441655
Stefan Kaskel10170536201
Hong Liu100190557561
Dirk De Vos9664233214
Peng Li95154845198
Feng Liu95106738478
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

94% related

Tianjin University
79.9K papers, 1.2M citations

92% related

Dalian University of Technology
71.9K papers, 1.1M citations

92% related

Nankai University
51.8K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023125
2022502
20212,924
20202,572
20192,340
20181,967