scispace - formally typeset
Search or ask a question
Institution

Nanjing Tech University

EducationNanjing, China
About: Nanjing Tech University is a education organization based out in Nanjing, China. It is known for research contribution in the topics: Catalysis & Membrane. The organization has 21827 authors who have published 21794 publications receiving 364050 citations. The organization is also known as: Nangongda & Nánjīng Gōngyè Dàxúe.


Papers
More filters
Journal ArticleDOI
16 Jul 2021-Science
TL;DR: In this paper, an iron-containing mordenite zeolite monolith with a pore system of precisely narrowed microchannels was self-assembled using a one-pot template-and binder-free process.
Abstract: The development of low-cost, efficient physisorbents is essential for gas adsorption and separation; however, the intrinsic tradeoff between capacity and selectivity, as well as the unavoidable shaping procedures of conventional powder sorbents, greatly limits their practical separation efficiency. Herein, an exceedingly stable iron-containing mordenite zeolite monolith with a pore system of precisely narrowed microchannels was self-assembled using a one-pot template- and binder-free process. Iron-containing mordenite monoliths that could be used directly for industrial application afforded record-high volumetric carbon dioxide uptakes (293 and 219 cubic centimeters of carbon dioxide per cubic centimeter of material at 273 and 298 K, respectively, at 1 bar pressure); excellent size-exclusive molecular sieving of carbon dioxide over argon, nitrogen, and methane; stable recyclability; and good moisture resistance capability. Column breakthrough experiments and process simulation further visualized the high separation efficiency.

121 citations

Journal ArticleDOI
Xiao-Ling Xu, Fu-Wen Lin, Yong Du, Xi Zhang, Jian Wu, Zhi-Kang Xu1 
TL;DR: Cross-linked GOLMs from GO assembled with cationic tetrakis(1-methyl-pyridinium-4-yl)porphyrin (TMPyP) by a vacuum-assisted strategy show high salt rejection.
Abstract: Swelling has great influences on the structure stability and separation performance of graphene oxide laminate membranes (GOLMs) for water desalination and purification. Herein, we report cross-linked GOLMs from GO assembled with cationic tetrakis(1-methyl-pyridinium-4-yl)porphyrin (TMPyP) by a vacuum-assisted strategy. The concave nonoxide regions (G regions) of GO are used as cross-linking sites for the first time to precisely control the channel size for water permeation and salt ion retention. Channels around 1 nm are constructed by modulating the assembly ratio of TMPyP/GO, and these cross-linked GOLMs show high salt rejection.

121 citations

Journal ArticleDOI
TL;DR: The amide modified COF nanosheet cluster with a 2D structure was facilely prepared through solid reaction, exhibiting good adsorption-based CO2 selectivity toward N2, and the mixed matrix membrane (MMM) shows promising CO2/N2 gas selectivity.
Abstract: Covalent organic framework (COF) membranes used for selective removal of CO2 were believed as an efficient and low-cost solution to energy and environmental sustainability. In this study, the amide modified COF nanosheet cluster with a 2D structure was facilely prepared through solid reaction, exhibiting good adsorption-based CO2 selectivity (223 at 273 K and 90 at 298 K) toward N2. Remarkably, the mixed matrix membrane (MMM) that consists of a lesser amount of COF filler (1 wt %) shows promising CO2/N2 gas selectivity (∼64). In addition, the competitive adsorption prompts the selectivity to ∼72 under an equimolar CO2/N2 mixture, which surpasses the values of all reported COF membranes. It is worth to note that the binary gas separation is stable during 120 h.

121 citations

Journal ArticleDOI
Qiang Liu1, Junzhang Lin2, Weidong Wang2, He Huang1, Shuang Li1 
TL;DR: In this paper, Bacillus subtilis BS-37 was a high-yield mutation strain; the titers of surfactin was 413 and 585 mg/l with 74.2% and 51.6% proportions of C15-surfactin, respectively.

121 citations

Journal ArticleDOI
TL;DR: In this paper, the properties and properties of fly ash and ground granulated blast furnace slag (GGBFS) blends were investigated via compressive strength testing, X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy/energy dispersive spectrography.
Abstract: Mechanical property and structure of alkali-activated fly ash (FA)/ground granulated blast furnace slag (GGBFS) blends were investigated via compressive strength testing, X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy/energy dispersive spectroscopy. It is shown that the incorporation of slag into solid precursors can improve compressive strength of the geopolymer binders and the optimal slag content ratio which will result in the highest strength is 0.8. GGBFS is relatively more reactive than FA in alkaline activation. The binder is predominantly a class of Al-substituted sodium calcium silicate hydrate (N-C-A-S-H) gel phase, which distributes around the solid particles homogeneously. Combining the results obtained from the glass diffraction maximum of XRD and the wavenumber of T-O-Si bands displayed in FTIR, it suggests that the degree of polymerization of geopolymer binders decreases and increases. This means that the microstructure of the bi...

121 citations


Authors

Showing all 22047 results

NameH-indexPapersCitations
Yi Chen2174342293080
Richard H. Friend1691182140032
Hua Zhang1631503116769
Wei Huang139241793522
Jian Zhou128300791402
Haiyan Wang119167486091
Jian Liu117209073156
Lain-Jong Li11362758035
Hong Wang110163351811
Jun-Jie Zhu10375441655
Stefan Kaskel10170536201
Hong Liu100190557561
Dirk De Vos9664233214
Peng Li95154845198
Feng Liu95106738478
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

94% related

Tianjin University
79.9K papers, 1.2M citations

92% related

Dalian University of Technology
71.9K papers, 1.1M citations

92% related

Nankai University
51.8K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023125
2022502
20212,924
20202,572
20192,340
20181,967