scispace - formally typeset
Search or ask a question
Institution

Pennsylvania State University

EducationState College, Pennsylvania, United States
About: Pennsylvania State University is a education organization based out in State College, Pennsylvania, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 79763 authors who have published 196876 publications receiving 8318601 citations. The organization is also known as: Penn State & PSU.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of the emerging research on additive manufacturing of metallic materials is provided in this article, which provides a comprehensive overview of the physical processes and the underlying science of metallurgical structure and properties of the deposited parts.

4,192 citations

Journal ArticleDOI
26 Mar 2013-ACS Nano
TL;DR: The properties and advantages of single-, few-, and many-layer 2D materials in field-effect transistors, spin- and valley-tronics, thermoelectrics, and topological insulators, among many other applications are highlighted.
Abstract: Graphene’s success has shown that it is possible to create stable, single and few-atom-thick layers of van der Waals materials, and also that these materials can exhibit fascinating and technologically useful properties. Here we review the state-of-the-art of 2D materials beyond graphene. Initially, we will outline the different chemical classes of 2D materials and discuss the various strategies to prepare single-layer, few-layer, and multilayer assembly materials in solution, on substrates, and on the wafer scale. Additionally, we present an experimental guide for identifying and characterizing single-layer-thick materials, as well as outlining emerging techniques that yield both local and global information. We describe the differences that occur in the electronic structure between the bulk and the single layer and discuss various methods of tuning their electronic properties by manipulating the surface. Finally, we highlight the properties and advantages of single-, few-, and many-layer 2D materials in...

4,123 citations

Journal ArticleDOI
Gerald A. Tuskan1, Gerald A. Tuskan2, Stephen P. DiFazio2, Stephen P. DiFazio3, Stefan Jansson4, Joerg Bohlmann5, Igor V. Grigoriev6, Uffe Hellsten6, Nicholas H. Putnam6, Steven G. Ralph5, Stephane Rombauts7, Asaf Salamov6, Jacquie Schein, Lieven Sterck7, Andrea Aerts6, Rishikeshi Bhalerao4, Rishikesh P. Bhalerao8, Damien Blaudez9, Wout Boerjan7, Annick Brun9, Amy M. Brunner10, Victor Busov11, Malcolm M. Campbell12, John E. Carlson13, Michel Chalot9, Jarrod Chapman6, G.-L. Chen2, Dawn Cooper5, Pedro M. Coutinho14, Jérémy Couturier9, Sarah F. Covert15, Quentin C. B. Cronk5, R. Cunningham2, John M. Davis16, Sven Degroeve7, Annabelle Déjardin9, Claude W. dePamphilis13, John C. Detter6, Bill Dirks17, Inna Dubchak18, Inna Dubchak6, Sébastien Duplessis9, Jürgen Ehlting5, Brian E. Ellis5, Karla C Gendler19, David Goodstein6, Michael Gribskov20, Jane Grimwood21, Andrew Groover22, Lee E. Gunter2, Björn Hamberger5, Berthold Heinze, Yrjö Helariutta23, Yrjö Helariutta24, Yrjö Helariutta8, Bernard Henrissat14, D. Holligan15, Robert A. Holt, Wenyu Huang6, N. Islam-Faridi22, Steven J.M. Jones, M. Jones-Rhoades25, Richard A. Jorgensen19, Chandrashekhar P. Joshi11, Jaakko Kangasjärvi24, Jan Karlsson4, Colin T. Kelleher5, Robert Kirkpatrick, Matias Kirst16, Annegret Kohler9, Udaya C. Kalluri2, Frank W. Larimer2, Jim Leebens-Mack15, Jean-Charles Leplé9, Philip F. LoCascio2, Y. Lou6, Susan Lucas6, Francis Martin9, Barbara Montanini9, Carolyn A. Napoli19, David R. Nelson26, C D Nelson22, Kaisa Nieminen24, Ove Nilsson8, V. Pereda9, Gary F. Peter16, Ryan N. Philippe5, Gilles Pilate9, Alexander Poliakov18, J. Razumovskaya2, Paul G. Richardson6, Cécile Rinaldi9, Kermit Ritland5, Pierre Rouzé7, D. Ryaboy18, Jeremy Schmutz21, J. Schrader27, Bo Segerman4, H. Shin, Asim Siddiqui, Fredrik Sterky, Astrid Terry6, Chung-Jui Tsai11, Edward C. Uberbacher2, Per Unneberg, Jorma Vahala24, Kerr Wall13, Susan R. Wessler15, Guojun Yang15, T. Yin2, Carl J. Douglas5, Marco A. Marra, Göran Sandberg8, Y. Van de Peer7, Daniel S. Rokhsar17, Daniel S. Rokhsar6 
15 Sep 2006-Science
TL;DR: The draft genome of the black cottonwood tree, Populus trichocarpa, has been reported in this paper, with more than 45,000 putative protein-coding genes identified.
Abstract: We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.

4,025 citations

Book
01 Jan 1995
TL;DR: In this article, Katok and Mendoza introduced the concept of asymptotic invariants for low-dimensional dynamical systems and their application in local hyperbolic theory.
Abstract: Part I. Examples and Fundamental Concepts Introduction 1. First examples 2. Equivalence, classification, and invariants 3. Principle classes of asymptotic invariants 4. Statistical behavior of the orbits and introduction to ergodic theory 5. Smooth invariant measures and more examples Part II. Local Analysis and Orbit Growth 6. Local hyperbolic theory and its applications 7. Transversality and genericity 8. Orbit growth arising from topology 9. Variational aspects of dynamics Part III. Low-Dimensional Phenomena 10. Introduction: What is low dimensional dynamics 11. Homeomorphisms of the circle 12. Circle diffeomorphisms 13. Twist maps 14. Flows on surfaces and related dynamical systems 15. Continuous maps of the interval 16. Smooth maps of the interval Part IV. Hyperbolic Dynamical Systems 17. Survey of examples 18. Topological properties of hyperbolic sets 19. Metric structure of hyperbolic sets 20. Equilibrium states and smooth invariant measures Part V. Sopplement and Appendix 21. Dynamical systems with nonuniformly hyperbolic behavior Anatole Katok and Leonardo Mendoza.

3,962 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data.
Abstract: We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a "vanilla" flat adiabaticCDM model without tilt (ns = 1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1� constraints on the Hubble parameter from h � 0.74 +0.18 −0.07 to h � 0.70 +0.04 −0.03, on the matter density from m � 0.25 ± 0.10 to m � 0.30 ± 0.04 (1�) and on neutrino masses from < 11 eV to < 0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0 � 16.3 +2.3

3,938 citations


Authors

Showing all 80524 results

NameH-indexPapersCitations
Robert Langer2812324326306
Zhong Lin Wang2452529259003
Donald P. Schneider2421622263641
David J. Hunter2131836207050
Robert M. Califf1961561167961
Martin White1962038232387
Eric J. Topol1931373151025
Charles A. Dinarello1901058139668
Jing Wang1844046202769
Dennis S. Charney179802122408
David Haussler172488224960
Chad A. Mirkin1641078134254
Ian A. Wilson15897198221
David Cella1561258106402
Jay Hauser1552145132683
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

98% related

University of Texas at Austin
206.2K papers, 9M citations

97% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

97% related

University of Minnesota
257.9K papers, 11.9M citations

97% related

Cornell University
235.5K papers, 12.2M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023278
20221,326
20219,400
20209,372
20198,765
20188,150