scispace - formally typeset
Search or ask a question
Institution

Sapienza University of Rome

EducationRome, Lazio, Italy
About: Sapienza University of Rome is a education organization based out in Rome, Lazio, Italy. It is known for research contribution in the topics: Population & Medicine. The organization has 62002 authors who have published 155468 publications receiving 4397244 citations. The organization is also known as: La Sapienza & Università La Sapienza di Roma.


Papers
More filters
Journal ArticleDOI
TL;DR: A new BLAST search tool, complementary to retrieval by keyword and UniProt accession number, allows users to submit a protein query to search against the curated data set of phosphorylated peptides.
Abstract: The Phospho.ELM resource (http://phospho.elm.eu.org) is a relational database designed to store in vivo and in vitro phosphorylation data extracted from the scientific literature and phosphoproteomic analyses. The resource has been actively developed for more than 7 years and currently comprises 42,574 serine, threonine and tyrosine non-redundant phosphorylation sites. Several new features have been implemented, such as structural disorder/order and accessibility information and a conservation score. Additionally, the conservation of the phosphosites can now be visualized directly on the multiple sequence alignment used for the score calculation. Finally, special emphasis has been put on linking to external resources such as interaction networks and other databases.

688 citations

Journal ArticleDOI
TL;DR: MPR-R significantly prolonged progression-free survival in patients with newly diagnosed multiple myeloma who were ineligible for transplantation, with the greatest benefit observed in patients 65 to 75 years of age.
Abstract: The median follow-up period was 30 months. The median progression-free survival was significantly longer with MPR-R (31 months) than with MPR (14 months; hazard ratio, 0.49; P<0.001) or MP (13 months; hazard ratio, 0.40; P <0.001). Response rates were superior with MPR-R and MPR (77% and 68%, respectively, vs. 50% with MP; P<0.001 and P = 0.002, respectively, for the comparison with MP). The progression-free survival benefit associated with MPR-R was noted in patients 65 to 75 years of age but not in those older than 75 years of age (P = 0.001 for treatment-by-age interaction). After induction therapy, a landmark analysis showed a 66% reduction in the rate of progression with MPR-R (hazard ratio for the comparison with MPR, 0.34; P<0.001) that was age-independent. During induction therapy, the most frequent adverse events were hematologic; grade 4 neutropenia was reported in 35%, 32%, and 8% of the patients in the MPR-R, MPR, and MP groups, respectively. The 3-year rate of second primary tumors was 7% with MPR-R, 7% with MPR, and 3% with MP. Conclusions MPR-R significantly prolonged progression-free survival in patients with newly di agnosed multiple myeloma who were ineligible for transplantation, with the great est benefit observed in patients 65 to 75 years of age. (Funded by Celgene; MM-015 ClinicalTrials.gov number, NCT00405756.)

688 citations

Journal ArticleDOI
27 Aug 2009-Nature
TL;DR: It is shown that the surface layer on the dormant conidia masks their recognition by the immune system and hence prevents immune response, and also immunologically silences airborne moulds.
Abstract: The air we breathe is filled with thousands of fungal spores (conidia) per cubic metre, which in certain composting environments can easily exceed 10(9) per cubic metre. They originate from more than a hundred fungal species belonging mainly to the genera Cladosporium, Penicillium, Alternaria and Aspergillus. Although these conidia contain many antigens and allergens, it is not known why airborne fungal microflora do not activate the host innate immune cells continuously and do not induce detrimental inflammatory responses following their inhalation. Here we show that the surface layer on the dormant conidia masks their recognition by the immune system and hence prevents immune response. To explore this, we used several fungal members of the airborne microflora, including the human opportunistic fungal pathogen Aspergillus fumigatus, in in vitro assays with dendritic cells and alveolar macrophages and in in vivo murine experiments. In A. fumigatus, this surface 'rodlet layer' is composed of hydrophobic RodA protein covalently bound to the conidial cell wall through glycosylphosphatidylinositol-remnants. RodA extracted from conidia of A. fumigatus was immunologically inert and did not induce dendritic cell or alveolar macrophage maturation and activation, and failed to activate helper T-cell immune responses in vivo. The removal of this surface 'rodlet/hydrophobin layer' either chemically (using hydrofluoric acid), genetically (DeltarodA mutant) or biologically (germination) resulted in conidial morphotypes inducing immune activation. All these observations show that the hydrophobic rodlet layer on the conidial cell surface immunologically silences airborne moulds.

686 citations

Journal ArticleDOI
S. Schael1, R. Barate2, R. Brunelière2, D. Buskulic2  +1672 moreInstitutions (143)
TL;DR: In this paper, the results of the four LEP experiments were combined to determine fundamental properties of the W boson and the electroweak theory, including the branching fraction of W and the trilinear gauge-boson self-couplings.

684 citations

Journal ArticleDOI
Stefan Hild1, M. R. Abernathy1, Fausto Acernese2, Pau Amaro-Seoane3, Nils Andersson4, K. G. Arun5, Fabrizio Barone2, B. Barr1, M. Barsuglia, Mark Beker, N. Beveridge1, S. Birindelli6, Suvadeep Bose7, L. Bosi, S. Braccini8, C. Bradaschia8, Tomasz Bulik9, Enrico Calloni10, Giancarlo Cella8, E. Chassande Mottin, S. Chelkowski11, Andrea Chincarini, James S. Clark12, E. Coccia13, C. Colacino8, J. Colas, A. Cumming1, L. Cunningham1, E. Cuoco, S. L. Danilishin14, Karsten Danzmann3, R. De Salvo15, T. Dent12, R. De Rosa10, L. Di Fiore10, A. Di Virgilio8, M. Doets16, V. Fafone13, Paolo Falferi17, R. Flaminio, J. Franc, F. Frasconi8, Andreas Freise11, D. Friedrich18, Paul Fulda11, Jonathan R. Gair19, Gianluca Gemme, E. Genin, A. Gennai11, A. Giazotto8, Kostas Glampedakis20, Christian Gräf3, M. Granata, Hartmut Grote3, G. M. Guidi21, A. Gurkovsky14, G. D. Hammond1, Mark Hannam12, Jan Harms15, D. Heinert22, Martin Hendry1, Ik Siong Heng1, E. Hennes, J. H. Hough, Sascha Husa23, S. H. Huttner1, G. T. Jones12, F. Y. Khalili14, Keiko Kokeyama11, Kostas D. Kokkotas20, Badri Krishnan3, Tjonnie G. F. Li, M. Lorenzini, H. Lück3, Ettore Majorana, Ilya Mandel24, Vuk Mandic25, M. Mantovani8, I. W. Martin1, Christine Michel, Y. Minenkov13, N. Morgado, S. Mosca10, B. Mours26, Helge Müller-Ebhardt18, P. G. Murray1, Ronny Nawrodt1, Ronny Nawrodt22, John Nelson1, Richard O'Shaughnessy27, Christian D. Ott15, C. Palomba, Angela Delli Paoli, G. Parguez, A. Pasqualetti, R. Passaquieti8, R. Passaquieti28, D. Passuello8, Laurent Pinard, Wolfango Plastino29, Rosa Poggiani8, Rosa Poggiani28, P. Popolizio, Mirko Prato, M. Punturo, P. Puppo, D. S. Rabeling16, P. Rapagnani30, Jocelyn Read31, Tania Regimbau6, H. Rehbein3, S. Reid1, F. Ricci30, F. Richard, A. Rocchi, Sheila Rowan1, A. Rüdiger3, Lucía Santamaría15, Benoit Sassolas, Bangalore Suryanarayana Sathyaprakash12, Roman Schnabel3, C. Schwarz22, Paul Seidel22, Alicia M. Sintes23, Kentaro Somiya15, Fiona C. Speirits1, Kenneth A. Strain1, S. E. Strigin14, P. J. Sutton12, S. P. Tarabrin18, Andre Thüring3, J. F. J. van den Brand16, M. van Veggel1, C. Van Den Broeck, Alberto Vecchio11, John Veitch12, F. Vetrano21, A. Viceré21, S. P. Vyatchanin14, Benno Willke3, Graham Woan1, Kazuhiro Yamamoto 
TL;DR: In this article, a special focus is set on evaluating the frequency band below 10 Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates, including the most relevant fundamental noise contributions.
Abstract: Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope (ET), a third-generation gravitational wave detector, has been proposed in order to fully open up the emerging field of gravitational wave astronomy. In this paper we describe sensitivity models for ET and investigate potential limits imposed by fundamental noise sources. A special focus is set on evaluating the frequency band below 10 Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates. We develop the most accurate sensitivity model, referred to as ET-D, for a third-generation detector so far, including the most relevant fundamental noise contributions.

682 citations


Authors

Showing all 62745 results

NameH-indexPapersCitations
Charles A. Dinarello1901058139668
Gregory Y.H. Lip1693159171742
Peter A. R. Ade1621387138051
H. Eugene Stanley1541190122321
Suvadeep Bose154960129071
P. de Bernardis152680117804
Bart Staels15282486638
Alessandro Melchiorri151674116384
Andrew H. Jaffe149518110033
F. Piacentini149531108493
Subir Sarkar1491542144614
Albert Bandura148255276143
Carlo Rovelli1461502103550
Robert C. Gallo14582568212
R. Kowalewski1431815135517
Network Information
Related Institutions (5)
University of Padua
114.8K papers, 3.6M citations

98% related

University of Bologna
115.1K papers, 3.4M citations

97% related

University of Milan
139.7K papers, 4.6M citations

97% related

University of Turin
77.9K papers, 2.4M citations

97% related

Tel Aviv University
115.9K papers, 3.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023405
20221,106
20219,797
20209,755
20198,332
20187,615