scispace - formally typeset
Search or ask a question
Institution

University College Cork

EducationCork, Ireland
About: University College Cork is a education organization based out in Cork, Ireland. It is known for research contribution in the topics: Population & Context (language use). The organization has 12056 authors who have published 28452 publications receiving 958414 citations. The organization is also known as: Coláiste na hOllscoile Corcaigh & National University of Ireland, Cork.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a methodology has been proposed to perform the life cycle assessment (LCA) of the BESs and some recommendations have been given which may be useful in carrying out LCA of these systems.
Abstract: Bioelectrochemical systems (BESs) are devices capable of converting organic waste fraction present in wastewaters into useful energy vectors such as electricity or hydrogen. In recent years a large amount of research has been done on these unique systems in order to improve their performance both in terms of waste treatment as well as electric current production. Already there are plans to upscale this technology to convince the end-users of its potential. However, there are not many studies available on the life cycle of these systems with the current state of the art. In this article a methodology has been proposed to perform the life cycle assessment (LCA) of the BESs and some recommendations have been given which may be useful in carrying out LCA of these systems. Not only the direct benefits in terms of energy saved in aerating the wastewater treatment plants, but also the resulting saving in cost and electric power produced should be factored as well. The results of LCA should show that with current knowledge and existing materials, how well the MFCs compares with the existing treatment methods such as anaerobic digestion. Further, given the amount of research going on in this field, it is expected that with cheaper materials and better microorganisms, the technology will breakthrough even soon.

231 citations

Journal ArticleDOI
TL;DR: It is shown that porcine reproductive and respiratory syndrome virus (PRRSV), and apparently most other arteriviruses, use an additional PRF mechanism to access a conserved alternative ORF that overlaps the nsp2-encoding region of ORF1a in the +1 frame, demonstrating that −2 PRF is a functional gene-expression mechanism in eukaryotes and add another layer to the complexity of arterivirus genome expression.
Abstract: Programmed −1 ribosomal frameshifting (−1 PRF) is a gene-expression mechanism used to express many viral and some cellular genes In contrast, efficient natural utilization of −2 PRF has not been demonstrated previously in eukaryotic systems Like all nidoviruses, members of the Arteriviridae (a family of positive-stranded RNA viruses) express their replicase polyproteins pp1a and pp1ab from two long ORFs (1a and 1b), where synthesis of pp1ab depends on −1 PRF These polyproteins are posttranslationally cleaved into at least 13 functional nonstructural proteins Here we report that porcine reproductive and respiratory syndrome virus (PRRSV), and apparently most other arteriviruses, use an additional PRF mechanism to access a conserved alternative ORF that overlaps the nsp2-encoding region of ORF1a in the +1 frame We show here that this ORF is translated via −2 PRF at a conserved G_GUU_UUU sequence (underscores separate ORF1a codons) at an estimated efficiency of around 20%, yielding a transframe fusion (nsp2TF) with the N-terminal two thirds of nsp2 Expression of nsp2TF in PRRSV-infected cells was verified using specific Abs, and the site and direction of frameshifting were determined via mass spectrometric analysis of nsp2TF Further, mutagenesis showed that the frameshift site and an unusual frameshift-stimulatory element (a conserved CCCANCUCC motif 11 nucleotides downstream) are required to direct efficient −2 PRF Mutations preventing nsp2TF expression impair PRRSV replication and produce a small-plaque phenotype Our findings demonstrate that −2 PRF is a functional gene-expression mechanism in eukaryotes and add another layer to the complexity of arterivirus genome expression

231 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the current status of grassland monitoring/observation methods and applications based on satellite remote sensing data, and identified the key remaining challenges and some new upcoming trends for future development.
Abstract: Aims Grasslands are the world’s most extensive terrestrial ecosystem, and are a major feed source for livestock. Meeting increasing demand for meat and other dairy products in a sustainable manner is a big challenge. At a field scale, Global Positioning System and ground-based sensor technologies provide promising tools for grassland and herd management with high precision. With the growth in availability of spaceborne remote sensing data, it is therefore important to revisit the relevant methods and applications that can exploit this imagery. In this article, we have reviewed the (i) current status of grassland monitoring/observation methods and applications based on satellite remote sensing data, (ii) the technological and methodological developments to retrieve different grassland biophysical parameters and management characteristics (i.e. degradation, grazing intensity) and (iii) identified the key remaining challenges and some new upcoming trends for future development. Important Findings The retrieval of grassland biophysical parameters have evolved in recent years from classical regression analysis to more complex, efficient and robust modeling approaches, driven by satellite data, and are likely to continue to be the most robust method for deriving grassland information, however these require more high quality calibration and validation data. We found that the hypertemporal satellite data are widely used for time series generation, and particularly to overcome cloud contamination issues, but the current low spatial resolution of these instruments precludes their use for field-scale application in many countries. This trend may change with the current rise in launch of satellite constellations, such as RapidEye, Sentinel-2 and even the microsatellites such as those operated by Skybox Imaging. Microwave imagery has not been widely used for grassland applications, and a better understanding of the backscatter behaviour from different phenological stages is needed for more reliable products in cloudy regions. The development of hyperspectral satellite instrumentation and analytical methods will help for more detailed discrimination of habitat types, and the development of tools for greater end-user operation.

231 citations

Journal ArticleDOI
TL;DR: The development of a medium‐density Atlantic salmon single nucleotide polymorphism (SNP) array based on expressed sequence tags (ESTs) and genomic sequencing is described and the potential for the array to disentangle neutral and putative adaptive divergence of SNP allele frequencies across populations and among regional groups is assessed.
Abstract: Atlantic salmon (Salmo salar) is one of the most extensively studied fish species in the world due to its significance in aquaculture, fisheries and ongoing conservation efforts to protect declining populations Yet, limited genomic resources have hampered our understanding of genetic architecture in the species and the genetic basis of adaptation to the wide range of natural and artificial environments it occupies In this study, we describe the development of a medium-density Atlantic salmon single nucleotide polymorphism (SNP) array based on expressed sequence tags (ESTs) and genomic sequencing The array was used in the most extensive assessment of population genetic structure performed to date in this species A total of 6176 informative SNPs were successfully genotyped in 38 anadromous and freshwater wild populations distributed across the species natural range Principal component analysis clearly differentiated European and North American populations, and within Europe, three major regional genetic groups were identified for the first time in a single analysis We assessed the potential for the array to disentangle neutral and putative adaptive divergence of SNP allele frequencies across populations and among regional groups In Europe, secondary contact zones were identified between major clusters where endogenous and exogenous barriers could be associated, rendering the interpretation of environmental influence on potentially adaptive divergence equivocal A small number of markers highly divergent in allele frequencies (outliers) were observed between (multiple) freshwater and anadromous populations, between northern and southern latitudes, and when comparing Baltic populations to all others We also discuss the potential future applications of the SNP array for conservation, management and aquaculture

231 citations

Journal ArticleDOI
TL;DR: Comparison with two other coexpressed mutant/normal channels suggests that the I4898T mutation produces one of the most abnormal RyR1 channels yet investigated, and this level of abnormality is reflected in the severe and penetrant phenotype of affected central core disease individuals.
Abstract: Central core disease is a rare, nonprogressive myopathy that is characterized by hypotonia and proximal muscle weakness. In a large Mexican kindred with an unusually severe and highly penetrant form of the disorder, DNA sequencing identified an I4898T mutation in the C-terminal transmembrane/luminal region of the RyR1 protein that constitutes the skeletal muscle ryanodine receptor. All previously reported RYR1 mutations are located either in the cytoplasmic N terminus or in a central cytoplasmic region of the 5,038-aa protein. The I4898T mutation was introduced into a rabbit RYR1 cDNA and expressed in HEK-293 cells. The response of the mutant RyR1 Ca2+ channel to the agonists halothane and caffeine in a Ca2+ photometry assay was completely abolished. Coexpression of normal and mutant RYR1 cDNAs in a 1:1 ratio, however, produced RyR1 channels with normal halothane and caffeine sensitivities, but maximal levels of Ca2+ release were reduced by 67%. [3H]Ryanodine binding indicated that the heterozygous channel is activated by Ca2+ concentrations 4-fold lower than normal. Single-cell analysis of cotransfected cells showed a significantly increased resting cytoplasmic Ca2+ level and a significantly reduced luminal Ca2+ level. These data are indicative of a leaky channel, possibly caused by a reduction in the Ca2+ concentration required for channel activation. Comparison with two other coexpressed mutant/normal channels suggests that the I4898T mutation produces one of the most abnormal RyR1 channels yet investigated, and this level of abnormality is reflected in the severe and penetrant phenotype of affected central core disease individuals.

231 citations


Authors

Showing all 12300 results

NameH-indexPapersCitations
Stephen J. O'Brien153106293025
James J. Collins15166989476
J. Wouter Jukema12478561555
John F. Cryan12472358938
Fergus Shanahan11770551963
Timothy G. Dinan11668960561
John M. Starr11669548761
Gordon G. Wallace114126769095
Colin Hill11269354484
Robert Clarke11151290049
Douglas B. Kell11163450335
Thomas Bein10967742800
Steven C. Hayes10645051556
Åke Borg10544453835
Eamonn Martin Quigley10368539585
Network Information
Related Institutions (5)
University of Edinburgh
151.6K papers, 6.6M citations

92% related

University of Bristol
113.1K papers, 4.9M citations

92% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

92% related

University of Manchester
168K papers, 6.4M citations

91% related

University College London
210.6K papers, 9.8M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202381
2022400
20212,153
20201,927
20191,679
20181,618