scispace - formally typeset
Search or ask a question
Institution

University of St Andrews

EducationSt Andrews, Fife, United Kingdom
About: University of St Andrews is a education organization based out in St Andrews, Fife, United Kingdom. It is known for research contribution in the topics: Population & Laser. The organization has 16260 authors who have published 43364 publications receiving 1636072 citations. The organization is also known as: St Andrews University & University of St. Andrews.
Topics: Population, Laser, Stars, Catalysis, Galaxy


Papers
More filters
Journal ArticleDOI
TL;DR: Methods of evaluating change in biodiversity at the community level using long-term datasets are reviewed, and whole-community approaches with those that combine information from different species and habitats are contrasted.
Abstract: The growing need for baseline data against which efforts to reduce the rate of biodiversity loss can be judged highlights the importance of long-term datasets, some of which are as old as ecology itself. We review methods of evaluating change in biodiversity at the community level using these datasets, and contrast whole-community approaches with those that combine information from different species and habitats. As all communities experience temporal turnover, one of the biggest challenges is distinguishing change that can be attributed to external factors, such as anthropogenic activities, from underlying natural change. We also discuss methodological issues, such as false alerts and modifications in design, of which users of these data sets need to be aware.

718 citations

Journal ArticleDOI
TL;DR: It is demonstrated that growing nano-size phases from perovskites can be controlled through judicious choice of composition, particularly by tuning deviations from the ideal ABO3 stoichiometry.
Abstract: Surfaces decorated with uniformly dispersed catalytically active nanoparticles play a key role in many fields, including renewable energy and catalysis. Typically, these structures are prepared by deposition techniques, but alternatively they could be made by growing the nanoparticles in situ directly from the (porous) backbone support. Here we demonstrate that growing nano-size phases from perovskites can be controlled through judicious choice of composition, particularly by tuning deviations from the ideal ABO3 stoichiometry. This non-stoichiometry facilitates a change in equilibrium position to make particle exsolution much more dynamic, enabling the preparation of compositionally diverse nanoparticles (that is, metallic, oxides or mixtures) and seems to afford unprecedented control over particle size, distribution and surface anchorage. The phenomenon is also shown to be influenced strongly by surface reorganization characteristics. The concept exemplified here may serve in the design and development of more sophisticated oxide materials with advanced functionality across a range of possible domains of application.

711 citations

Journal ArticleDOI
09 Oct 2014-Nature
TL;DR: This synthesis maintains that important drivers of evolution, ones that cannot be reduced to genes, must be woven into the very fabric of evolutionary theory, and believes that the EES will shed new light on how Point Yes, urgently is shed.
Abstract: Nobel physicist talks plants with a waiter, then what? p.168 ENERGY Don't assume that renewable energies are problem-free p.168 AGEING Atul Gawande's call to action on end-of-life medical care p.167 HEALTH Lasting legacy of wartime battle against malaria p.166 Does evolutionary theory need a rethink? Researchers are divided over what processes should be considered fundamental. I n October 1881, just six months before he died, Charles Darwin published his final book. The Formation of Vegetable Mould, Through the Actions of Worms 11 sold briskly: Darwin's earlier publications had secured his reputation. He devoted an entire book to these humble creatures in part because they exemplify an interesting feedback process: earthworms are adapted to thrive in an environment that they modify through their own activities. Darwin learned about earthworms from conversations with gardeners and his own simple experiments. He had a genius for distilling penetrating insights about evolutionary processes — often after amassing years of observational and experimental data — and he drew on such disparate topics as agriculture, geology, embryol-ogy and behaviour. Evolutionary thinking ever since has followed Darwin's lead in its emphasis on evidence and in synthesizing information from other fields. A profound shift in evolutionary thinking began C harles Darwin conceived of evolution by natural selection without knowing that genes exist. Now mainstream evolutionary theory has come to focus almost exclusively on genetic inheritance and processes that change gene frequencies. Yet new data pouring out of adjacent fields are starting to undermine this narrow stance. An alternative vision of evolution is beginning to crystallize, in which the processes by which organisms grow and develop are recognized as causes of evolution. Some of us first met to discuss these advances six years ago. In the time since, as members of an interdisciplinary team, we have worked intensively to develop a broader framework, termed the extended evolutionary synthesis 1 (EES), and to flesh out its structure, assumptions and predictions. In essence, this synthesis maintains that important drivers of evolution, ones that cannot be reduced to genes, must be woven into the very fabric of evolutionary theory. We believe that the EES will shed new light on how POINT Yes, urgently Without an extended evolutionary framework, the theory neglects key processes, say Kevin Laland and colleagues.

709 citations

Journal ArticleDOI
TL;DR: It is shown that a TiC-based cathode reduces greatly side reactions and exhibits better reversible formation/decomposition of Li2O2 even than nanoporous gold and is also four times lighter, of lower cost and easier to fabricate.
Abstract: Rechargeable lithium-air (O2) batteries are receiving intense interest because their high theoretical specific energy exceeds that of lithium-ion batteries. If the Li-O2 battery is ever to succeed, highly reversible formation/decomposition of Li2O2 must take place at the cathode on cycling. However, carbon, used ubiquitously as the basis of the cathode, decomposes during Li2O2 oxidation on charge and actively promotes electrolyte decomposition on cycling. Replacing carbon with a nanoporous gold cathode, when in contact with a dimethyl sulphoxide-based electrolyte, does seem to demonstrate better stability. However, nanoporous gold is not a suitable cathode; its high mass destroys the key advantage of Li-O2 over Li ion (specific energy), it is too expensive and too difficult to fabricate. Identifying a suitable cathode material for the Li-O2 cell is one of the greatest challenges at present. Here we show that a TiC-based cathode reduces greatly side reactions (arising from the electrolyte and electrode degradation) compared with carbon and exhibits better reversible formation/decomposition of Li2O2 even than nanoporous gold (>98% capacity retention after 100 cycles, compared with 95% for nanoporous gold); it is also four times lighter, of lower cost and easier to fabricate. The stability may originate from the presence of TiO2 (along with some TiOC) on the surface of TiC. In contrast to carbon or nanoporous gold, TiC seems to represent a more viable, stable, cathode for aprotic Li-O2 cells.

706 citations


Authors

Showing all 16531 results

NameH-indexPapersCitations
Yi Chen2174342293080
Paul M. Thompson1832271146736
Ian J. Deary1661795114161
Dongyuan Zhao160872106451
Mark J. Smyth15371388783
Harry Campbell150897115457
William J. Sutherland14896694423
Thomas J. Smith1401775113919
John A. Peacock140565125416
Jean-Marie Tarascon136853137673
David A. Jackson136109568352
Ian Ford13467885769
Timothy J. Mitchison13340466418
Will J. Percival12947387752
David P. Lane12956890787
Network Information
Related Institutions (5)
University of Oxford
258.1K papers, 12.9M citations

94% related

University of Cambridge
282.2K papers, 14.4M citations

94% related

University of Edinburgh
151.6K papers, 6.6M citations

93% related

University of Manchester
168K papers, 6.4M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022388
20211,998
20201,996
20192,059
20181,946