scispace - formally typeset
Search or ask a question
Institution

University of St Andrews

EducationSt Andrews, Fife, United Kingdom
About: University of St Andrews is a education organization based out in St Andrews, Fife, United Kingdom. It is known for research contribution in the topics: Population & Laser. The organization has 16260 authors who have published 43364 publications receiving 1636072 citations. The organization is also known as: St Andrews University & University of St. Andrews.
Topics: Population, Laser, Stars, Catalysis, Galaxy


Papers
More filters
Journal ArticleDOI
TL;DR: An updated evolutionary classification of CRISPR–Cas systems and cas genes is provided, with an emphasis on the major developments that have occurred since the publication of the latest classification, in 2015, which includes 2 classes, 6 types and 33 subtypes.
Abstract: The number and diversity of known CRISPR-Cas systems have substantially increased in recent years. Here, we provide an updated evolutionary classification of CRISPR-Cas systems and cas genes, with an emphasis on the major developments that have occurred since the publication of the latest classification, in 2015. The new classification includes 2 classes, 6 types and 33 subtypes, compared with 5 types and 16 subtypes in 2015. A key development is the ongoing discovery of multiple, novel class 2 CRISPR-Cas systems, which now include 3 types and 17 subtypes. A second major novelty is the discovery of numerous derived CRISPR-Cas variants, often associated with mobile genetic elements that lack the nucleases required for interference. Some of these variants are involved in RNA-guided transposition, whereas others are predicted to perform functions distinct from adaptive immunity that remain to be characterized experimentally. The third highlight is the discovery of numerous families of ancillary CRISPR-linked genes, often implicated in signal transduction. Together, these findings substantially clarify the functional diversity and evolutionary history of CRISPR-Cas.

1,153 citations

Journal ArticleDOI
TL;DR: Social learning is increasingly becoming a normative goal in natural resource management and policy, but there remains little consensus over its meaning or theoretical basis as discussed by the authors. This lack of conceptual clarity has limited our capacity to assess whether social learning has occurred, and if so, what kind of learning has taken place, to what extent, between whom, when, and how.
Abstract: Social learning is increasingly becoming a normative goal in natural resource management and policy. However, there remains little consensus over its meaning or theoretical basis. There are still considerable differences in understanding of the concept in the literature, including a number of articles published in Ecology & Society. Social learning is often conflated with other concepts such as participation and proenvironmental behavior, and there is often little distinction made between individual and wider social learning. Many unsubstantiated claims for social learning exist, and there is frequently confusion between the concept itself and its potential outcomes. This lack of conceptual clarity has limited our capacity to assess whether social learning has occurred, and if so, what kind of learning has taken place, to what extent, between whom, when, and how. This response attempts to provide greater clarity on the conceptual basis for social learning. We argue that to be considered social learning, a process must: (1) demonstrate that a change in understanding has taken place in the individuals involved; (2) demonstrate that this change goes beyond the individual and becomes situated within wider social units or communities of practice; and (3) occur through social interactions and processes between actors within a social network. A clearer picture of what we mean by social learning could enhance our ability to critically evaluate outcomes and better understand the processes through which social learning occurs. In this way, it may be possible to better facilitate the desired outcomes of social learning processes.

1,136 citations

Journal ArticleDOI
26 Aug 2004-Nature
TL;DR: The preparation of aluminophosphate zeolites and zeolite analogues by using ionic liquids and eutectic mixtures, leading to four zeotype frameworks under different experimental conditions is reported.
Abstract: The challenges associated with synthesizing porous materials1 mean that new classes of zeolites (zeotypes)—such as aluminosilicate zeolites2,3 and zeolite analogues4—together with new methods of preparing known zeotypes5, continue to be of great importance. Normally these materials are prepared hydrothermally with water as the solvent in a sealed autoclave under autogenous pressure6. The reaction mixture usually includes an organic template or ‘structure-directing agent’ that guides the synthesis pathway towards particular structures. Here we report the preparation of aluminophosphate zeolite analogues by using ionic liquids7 and eutectic mixtures8. An imidazolium-based ionic liquid acts as both solvent and template, leading to four zeotype frameworks under different experimental conditions. The structural characteristics of the materials can be traced back to the solvent chemistry used. Because of the vanishingly low vapour pressure of ionic liquids, synthesis takes place at ambient pressure, eliminating safety concerns associated with high hydrothermal pressures. The ionic liquid can also be recycled for further use. A choline chloride/urea eutectic mixture8 is also used in the preparation of a new zeotype framework.

1,135 citations

Book
01 Jan 1984

1,132 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations


Authors

Showing all 16531 results

NameH-indexPapersCitations
Yi Chen2174342293080
Paul M. Thompson1832271146736
Ian J. Deary1661795114161
Dongyuan Zhao160872106451
Mark J. Smyth15371388783
Harry Campbell150897115457
William J. Sutherland14896694423
Thomas J. Smith1401775113919
John A. Peacock140565125416
Jean-Marie Tarascon136853137673
David A. Jackson136109568352
Ian Ford13467885769
Timothy J. Mitchison13340466418
Will J. Percival12947387752
David P. Lane12956890787
Network Information
Related Institutions (5)
University of Oxford
258.1K papers, 12.9M citations

94% related

University of Cambridge
282.2K papers, 14.4M citations

94% related

University of Edinburgh
151.6K papers, 6.6M citations

93% related

University of Manchester
168K papers, 6.4M citations

93% related

University College London
210.6K papers, 9.8M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022388
20211,998
20201,996
20192,059
20181,946