scispace - formally typeset
Search or ask a question
Institution

University of Texas at Austin

EducationAustin, Texas, United States
About: University of Texas at Austin is a education organization based out in Austin, Texas, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 94352 authors who have published 206297 publications receiving 9070052 citations. The organization is also known as: UT-Austin & UT Austin.


Papers
More filters
Journal ArticleDOI
TL;DR: An ultra-sensitive resistive pressure sensor based on an elastic, microstructured conducting polymer thin film that enables the detection of pressures of less than 1Pa and exhibits a short response time, good reproducibility, excellent cycling stability and temperature-stable sensing.
Abstract: Pressure sensing is an important function of electronic skin devices. The development of pressure sensors that can mimic and surpass the subtle pressure sensing properties of natural skin requires the rational design of materials and devices. Here we present an ultra-sensitive resistive pressure sensor based on an elastic, microstructured conducting polymer thin film. The elastic microstructured film is prepared from a polypyrrole hydrogel using a multiphase reaction that produced a hollow-sphere microstructure that endows polypyrrole with structure-derived elasticity and a low effective elastic modulus. The contact area between the microstructured thin film and the electrodes increases with the application of pressure, enabling the device to detect low pressures with ultra-high sensitivity. Our pressure sensor based on an elastic microstructured thin film enables the detection of pressures of less than 1Pa and exhibits a short response time, good reproducibility, excellent cycling stability and temperature-stable sensing.

1,199 citations

Journal ArticleDOI
TL;DR: The origins and applications of stimuli-responsive polymer systems and polymer therapeutics such as polymer-protein and polymer-drug conjugates are reviewed and the latest developments in polymers capable of molecular recognition or directing intracellular delivery are surveyed to illustrate areas of research advancing the frontiers of drug delivery.
Abstract: Polymers have played an integral role in the advancement of drug delivery technology by providing controlled release of therapeutic agents in constant doses over long periods, cyclic dosage, and tunable release of both hydrophilic and hydrophobic drugs. From early beginnings using off-the-shelf materials, the field has grown tremendously, driven in part by the innovations of chemical engineers. Modern advances in drug delivery are now predicated upon the rational design of polymers tailored for specific cargo and engineered to exert distinct biological functions. In this review, we highlight the fundamental drug delivery systems and their mathematical foundations and discuss the physiological barriers to drug delivery. We review the origins and applications of stimuli-responsive polymer systems and polymer therapeutics such as polymer-protein and polymer-drug conjugates. The latest developments in polymers capable of molecular recognition or directing intracellular delivery are surveyed to illustrate areas of research advancing the frontiers of drug delivery.

1,199 citations

Journal ArticleDOI
TL;DR: In this article, a two-part review summarizes the observations, theory, and simulations of interstellar turbulence and their implications for many fields of astrophysics, including basic fluid equations, solenoidal and compressible modes, global inviscid quadratic invariants, scaling arguments for the power spectrum, phenomenological models for the scaling of higher-order structu...
Abstract: ▪ Abstract Turbulence affects the structure and motions of nearly all temperature and density regimes in the interstellar gas. This two-part review summarizes the observations, theory, and simulations of interstellar turbulence and their implications for many fields of astrophysics. The first part begins with diagnostics for turbulence that have been applied to the cool interstellar medium and highlights their main results. The energy sources for interstellar turbulence are then summarized along with numerical estimates for their power input. Supernovae and superbubbles dominate the total power, but many other sources spanning a large range of scales, from swing-amplified gravitational instabilities to cosmic ray streaming, all contribute in some way. Turbulence theory is considered in detail, including the basic fluid equations, solenoidal and compressible modes, global inviscid quadratic invariants, scaling arguments for the power spectrum, phenomenological models for the scaling of higher-order structu...

1,195 citations

Journal ArticleDOI
TL;DR: In this paper, a meta-analysis spanning 203 species was conducted on published datasets from the northern hemisphere, showing that the difference in estimated response is primarily due to differences between the studies in criteria for incorporating data.
Abstract: New analyses are presented addressing the global impacts of recent climate change on phenology of plant and animal species. A meta-analysis spanning 203 species was conducted on published datasets from the northern hemisphere. Phenological response was examined with respect to two factors: distribution of species across latitudes and taxonomic affiliation or functional grouping of target species. Amphibians had a significantly stronger shift toward earlier breeding than all other taxonomic/functional groups, advancing more than twice as fast as trees, birds and butterflies. In turn, butterfly emergence or migratory arrival showed three times stronger advancement than the first flowering of herbs, perhaps portending increasing asynchrony in insect‐plant interactions. Response was significantly stronger at higher latitudes where warming has been stronger, but latitude explained o4% of the variation. Despite expectation, latitude was not yet an important predictor of climate change impacts on phenology. The only two previously published estimates of the magnitude of global response are quite different: 2.3 and 5.1daysdecade 1 advancement. The scientific community has assumed this difference to be real and has attempted to explain it in terms of biologically relevant phenomena: specifically, differences in distribution of data across latitudes, taxa or time periods. Here, these and other possibilities are explored. All analyses indicate that the difference in estimated response is primarily due to differences between the studies in criteria for incorporating data. It is a clear and automatic consequence of the exclusion by one study of data on ‘stable’ (nonresponsive) species. Once this is accounted for, the two studies support each other, generating similar conclusions despite analyzing substantially nonoverlapping datasets. Analyses here on a new expanded dataset estimate an overall spring advancement across the northern hemisphere of 2.8daysdecade 1 . This is the first quantitative analysis showing that data-sampling methodologies significantly impact global (synthetic) estimates of magnitude of global warming response.

1,194 citations

Journal ArticleDOI
TL;DR: This article conducted a second-order meta-analysis to assess the implications of using college student subjects in social science research and found that responses of college students were slightly more homogeneous than those of nonstudent subjects, and that effect sizes derived from college students frequently differed from those derived from non-student subjects both directionally and in magnitude.
Abstract: A second‐order meta‐analysis was conducted to assess the implications of using college student subjects in social science research. Four meta‐analyses investigating response homogeneity (cumulative N > 650,000) and 30 meta‐analyses reporting effect sizes for 65 behavioral or psychological relationships (cumulative N > 350,000) provided comparative data for college student subjects and nonstudent (adult) subjects for the present research. In general, responses of college student subjects were found to be slightly more homogeneous than those of nonstudent subjects. Moreover, effect sizes derived from college student subjects frequently differed from those derived from nonstudent subjects both directionally and in magnitude. Because there was no systematic pattern to the differences observed, caution must be exercised when attempting to extend any relationship found using college student subjects to a nonstudent (adult) population. The results augur in favor of, and emphasize the importance of, replicating r...

1,194 citations


Authors

Showing all 95138 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Eugene Braunwald2301711264576
Yi Chen2174342293080
Robert J. Lefkowitz214860147995
Joseph L. Goldstein207556149527
Eric N. Olson206814144586
Hagop M. Kantarjian2043708210208
Rakesh K. Jain2001467177727
Francis S. Collins196743250787
Gordon B. Mills1871273186451
Scott M. Grundy187841231821
Michael S. Brown185422123723
Eric Boerwinkle1831321170971
Aaron R. Folsom1811118134044
Jiaguo Yu178730113300
Network Information
Related Institutions (5)
Stanford University
320.3K papers, 21.8M citations

97% related

Columbia University
224K papers, 12.8M citations

96% related

University of California, San Diego
204.5K papers, 12.3M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

University of Washington
305.5K papers, 17.7M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023304
20221,210
202110,141
202010,331
20199,727
20188,973