scispace - formally typeset
Search or ask a question
Institution

University of Texas at Austin

EducationAustin, Texas, United States
About: University of Texas at Austin is a education organization based out in Austin, Texas, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 94352 authors who have published 206297 publications receiving 9070052 citations. The organization is also known as: UT-Austin & UT Austin.


Papers
More filters
Journal ArticleDOI
TL;DR: Their strong signal, resistance to photobleaching, chemical stability, ease of synthesis, simplicity of conjugation chemistry, and biocompatibility make gold nanorods an attractive contrast agent for two-photon imaging of epithelial cancer.
Abstract: We demonstrate the use of gold nanorods as bright contrast agents for two-photon luminescence (TPL) imaging of cancer cells in a three-dimensional tissue phantom down to 75 μm deep. The TPL intensity from gold-nanorod-labeled cancer cells is 3 orders of magnitude brighter than the two-photon autofluorescence (TPAF) emission intensity from unlabeled cancer cells at 760 nm excitation light. Their strong signal, resistance to photobleaching, chemical stability, ease of synthesis, simplicity of conjugation chemistry, and biocompatibility make gold nanorods an attractive contrast agent for two-photon imaging of epithelial cancer.

875 citations

Posted Content
TL;DR: In this article, the authors employ resampling techniques to identify the model that is driving trade flows, and find that the accuracy of the monopolistic competition theory's prediction improves in samples where the factor endowment allocations generate a higher share of differentiated goods trade.
Abstract: Examining the accuracy of the monopolistic competition theory's predictions for import volumes, we assess whether this theory accounts for the empirical success of the gravity equation Since certain factor-endowment based theories have the same prediction for import volumes, we employ resampling techniques to address this model identification problem We use extraneous information on the allocation of factor endowments in a given sample to identify which model is driving trade flows We find that the accuracy of the monopolistic competition theory's prediction improves in samples where the factor endowment allocations generate a higher share of differentiated goods trade By an analogous criterion, the Heckscher-Ohlin models make a much less accurate prediction We conclude that the monopolistic competition theory is more likely to account for the gravity equation's success, especially in explaining trade among industrial nations

873 citations

Journal ArticleDOI
TL;DR: Catuneanu et al. as discussed by the authors used a neutral approach that focused on model-independent, fundamental concepts, because these are the ones common to various approaches and this search for common ground is what they meant by "standardization", not the imposition of a strict, inflexible set of rules for the placement of sequence-stratigraphicsurfaces.

872 citations

Journal ArticleDOI
TL;DR: In this article, the authors define diffusion as the process of the market penetration of new products and services that is driven by social influences, which include all interdependencies among consumers that affect various market players with or without their explicit knowledge.

870 citations

Journal ArticleDOI
TL;DR: A generative mixture-model approach to clustering directional data based on the von Mises-Fisher distribution, which arises naturally for data distributed on the unit hypersphere, and derives and analyzes two variants of the Expectation Maximization framework for estimating the mean and concentration parameters of this mixture.
Abstract: Several large scale data mining applications, such as text categorization and gene expression analysis, involve high-dimensional data that is also inherently directional in nature. Often such data is L2 normalized so that it lies on the surface of a unit hypersphere. Popular models such as (mixtures of) multi-variate Gaussians are inadequate for characterizing such data. This paper proposes a generative mixture-model approach to clustering directional data based on the von Mises-Fisher (vMF) distribution, which arises naturally for data distributed on the unit hypersphere. In particular, we derive and analyze two variants of the Expectation Maximization (EM) framework for estimating the mean and concentration parameters of this mixture. Numerical estimation of the concentration parameters is non-trivial in high dimensions since it involves functional inversion of ratios of Bessel functions. We also formulate two clustering algorithms corresponding to the variants of EM that we derive. Our approach provides a theoretical basis for the use of cosine similarity that has been widely employed by the information retrieval community, and obtains the spherical kmeans algorithm (kmeans with cosine similarity) as a special case of both variants. Empirical results on clustering of high-dimensional text and gene-expression data based on a mixture of vMF distributions show that the ability to estimate the concentration parameter for each vMF component, which is not present in existing approaches, yields superior results, especially for difficult clustering tasks in high-dimensional spaces.

869 citations


Authors

Showing all 95138 results

NameH-indexPapersCitations
George M. Whitesides2401739269833
Eugene Braunwald2301711264576
Yi Chen2174342293080
Robert J. Lefkowitz214860147995
Joseph L. Goldstein207556149527
Eric N. Olson206814144586
Hagop M. Kantarjian2043708210208
Rakesh K. Jain2001467177727
Francis S. Collins196743250787
Gordon B. Mills1871273186451
Scott M. Grundy187841231821
Michael S. Brown185422123723
Eric Boerwinkle1831321170971
Aaron R. Folsom1811118134044
Jiaguo Yu178730113300
Network Information
Related Institutions (5)
Stanford University
320.3K papers, 21.8M citations

97% related

Columbia University
224K papers, 12.8M citations

96% related

University of California, San Diego
204.5K papers, 12.3M citations

96% related

University of Michigan
342.3K papers, 17.6M citations

96% related

University of Washington
305.5K papers, 17.7M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023304
20221,210
202110,141
202010,331
20199,727
20188,973