scispace - formally typeset
Search or ask a question
Institution

University of Wisconsin-Madison

EducationMadison, Wisconsin, United States
About: University of Wisconsin-Madison is a education organization based out in Madison, Wisconsin, United States. It is known for research contribution in the topics: Population & Gene. The organization has 108707 authors who have published 237594 publications receiving 11883575 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In three studies, a robust relation between low self-esteem and externalizing problems was found, and the effect ofSelf-esteem on aggression was independent of narcissism, an important finding given recent claims that individuals who are narcissistic, not low in self- esteem, are aggressive.
Abstract: The present research explored the controversial link between global self-esteem and externalizing problems such as aggression, antisocial behavior, and delinquency. In three studies, we found a robust relation between low self-esteem and externalizing problems. This relation held for measures of self-esteem and externalizing problems based on self-report, teachers' ratings, and parents' ratings, and for participants from different nationalities (United States and New Zealand) and age groups (adolescents and college students). Moreover, this relation held both cross-sectionally and longitudinally and after controlling for potential confounding variables such as supportive parenting, parent-child and peer relationships, achievement-test scores, socioeconomic status, and IQ. In addition, the effect of self-esteem on aggression was independent of narcissism, an important finding given recent claims that individuals who are narcissistic, not low in self-esteem, are aggressive. Discussion focuses on clarifying ...

1,049 citations

Journal ArticleDOI
TL;DR: The scope of the thresholds concept in ecological science is defined and methods for identifying and investigating thresholds using a variety of examples from terrestrial and aquatic environments, at ecosystem, landscape and regional scales are discussed.
Abstract: An ecological threshold is the point at which there is an abrupt change in an ecosystem quality, property or phenomenon, or where small changes in an environmental driver produce large responses in the ecosystem. Analysis of thresholds is complicated by nonlinear dynamics and by multiple factor controls that operate at diverse spatial and temporal scales. These complexities have challenged the use and utility of threshold concepts in environmental management despite great concern about preventing dramatic state changes in valued ecosystems, the need for determining critical pollutant loads and the ubiquity of other threshold-based environmental problems. In this paper we define the scope of the thresholds concept in ecological science and discuss methods for identifying and investigating thresholds using a variety of examples from terrestrial and aquatic environments, at ecosystem, landscape and regional scales. We end with a discussion of key research needs in this area.

1,049 citations

Proceedings Article
08 Dec 1997
TL;DR: GreedyDual-Size as discussed by the authors incorporates locality with cost and size concerns in a simple and nonparameterized fashion for high performance, which can potentially improve the performance of main-memory caching of Web documents.
Abstract: Web caches can not only reduce network traffic and downloading latency, but can also affect the distribution of web traffic over the network through cost-aware caching. This paper introduces GreedyDual-Size, which incorporates locality with cost and size concerns in a simple and non-parameterized fashion for high performance. Trace-driven simulations show that with the appropriate cost definition, GreedyDual-Size outperforms existing web cache replacement algorithms in many aspects, including hit ratios, latency reduction and network cost reduction. In addition, GreedyDual-Size can potentially improve the performance of main-memory caching of Web documents.

1,048 citations

Journal ArticleDOI
TL;DR: EBSeq is developed, using the merits of empirical Bayesian methods, for identifying DE isoforms in an RNA-seq experiment comparing two or more biological conditions and proves to be a robust approach for identifying De genes.
Abstract: Motivation: Messenger RNA expression is important in normal development and differentiation, as well as in manifestation of disease. RNA-seq experiments allow for the identification of differentially expressed (DE) genes and their corresponding isoforms on a genome-wide scale. However, statistical methods are required to ensure that accurate identifications are made. A number of methods exist for identifying DE genes, but far fewer are available for identifying DE isoforms. When isoform DE is of interest, investigators often apply gene-level (count-based) methods directly to estimates of isoform counts. Doing so is not recommended. In short, estimating isoform expression is relatively straightforward for some groups of isoforms, but more challenging for others. This results in estimation uncertainty that varies across isoform groups. Count-based methods were not designed to accommodate this varying uncertainty, and consequently, application of them for isoform inference results in reduced power for some classes of isoforms and increased false discoveries for others. Results: Taking advantage of the merits of empirical Bayesian methods, we have developed EBSeq for identifying DE isoforms in an RNA-seq experiment comparing two or more biological conditions. Results demonstrate substantially improved power and performance of EBSeq for identifying DE isoforms. EBSeq also proves to be a robust approach for identifying DE genes. Availability and implementation: An R package containing examples and sample datasets is available at http://www.biostat.wisc.edu/ � kendzior/EBSEQ/.

1,048 citations

Book
01 Jan 1972

1,048 citations


Authors

Showing all 109671 results

NameH-indexPapersCitations
Eric S. Lander301826525976
Ronald C. Kessler2741332328983
Gordon H. Guyatt2311620228631
Yi Chen2174342293080
David Miller2032573204840
Robert M. Califf1961561167961
Ronald Klein1941305149140
Joan Massagué189408149951
Jens K. Nørskov184706146151
Terrie E. Moffitt182594150609
H. S. Chen1792401178529
Ramachandran S. Vasan1721100138108
Masayuki Yamamoto1711576123028
Avshalom Caspi170524113583
Jiawei Han1681233143427
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

96% related

University of California, San Diego
204.5K papers, 12.3M citations

95% related

University of Michigan
342.3K papers, 17.6M citations

95% related

Stanford University
320.3K papers, 21.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023333
20221,391
202110,151
20209,483
20199,278
20188,546