scispace - formally typeset
Search or ask a question

Showing papers in "Ecology in 2015"


Journal ArticleDOI
01 Sep 2015-Ecology
TL;DR: Three flawed practices associated with model averaging coefficients for predictor variables in regression models commonly occur when making multimodel inferences in analyses of ecological data and ought to be discontinued if the authors are to make effective scientific contributions to ecological knowledge and conservation of natural resources.
Abstract: Three flawed practices associated with model averaging coefficients for predictor variables in regression models commonly occur when making multimodel inferences in analyses of ecological data. Model-averaged regression coefficients based on Akaike information criterion (AIC) weights have been recommended for addressing model uncertainty but they are not valid, interpretable estimates of partial effects for individual predictors when there is multicollinearity among the predictor variables. Multicollinearity implies that the scaling of units in the denominators of the regression coefficients may change across models such that neither the parameters nor their estimates have common scales, therefore averaging them makes no sense. The associated sums of AIC model weights recommended to assess relative importance of individual predictors are really a measure of relative importance of models, with little information about contributions by individual predictors compared to other measures of relative importance based on effects size or variance reduction. Sometimes the model-averaged regression coefficients for predictor variables are incorrectly used to make model-averaged predictions of the response variable when the models are not linear in the parameters. I demonstrate the issues with the first two practices using the college grade point average example extensively analyzed by Burnham and Anderson. I show how partial standard deviations of the predictor variables can be used to detect changing scales of their estimates with multicollinearity. Standardizing estimates based on partial standard deviations for their variables can be used to make the scaling of the estimates commensurate across models, a necessary but not sufficient condition for model averaging of the estimates to be sensible. A unimodal distribution of estimates and valid interpretation of individual parameters are additional requisite conditions. The standardized estimates or equivalently the t statistics on unstandardized estimates also can be used to provide more informative measures of relative importance than sums of AIC weights. Finally, I illustrate how seriously compromised statistical interpretations and predictions can be for all three of these flawed practices by critiquing their use in a recent species distribution modeling technique developed for predicting Greater Sage-Grouse (Centrocercus urophasianus) distribution in Colorado, USA. These model averaging issues are common in other ecological literature and ought to be discontinued if we are to make effective scientific contributions to ecological knowledge and conservation of natural resources.

470 citations


Journal ArticleDOI
01 Jul 2015-Ecology
TL;DR: How ecologists are using miniature sensors to answer new questions about the physiological performance, energetics, foraging, migration, habitat selection, and sociality of wild animals, as well as collect data on the environments in which they live is explored.
Abstract: Great leaps forward in scientific understanding are often spurred by innovations in technology. The explosion of miniature sensors that are driving the boom in consumer electronics, such as smart phones, gaming platforms, and wearable fitness devices, are now becoming available to ecologists for remotely monitoring the activities of wild animals. While half a century ago researchers were attaching balloons to the backs of seals to measure their movement, today ecologists have access to an arsenal of sensors that can continuously measure most aspects of an animal's state (e.g., location, behavior, caloric expenditure, interactions with other animals) and external environment (e.g., temperature, salinity, depth). This technology is advancing our ability to study animal ecology by allowing researchers to (1) answer questions about the physiology, behavior, and ecology of wild animals in situ that would have previously been limited to tests on model organisms in highly controlled settings, (2) study cryptic or wide-ranging animals that have previously evaded investigation, and (3) develop and test entirely new theories. Here we explore how ecologists are using these tools to answer new questions about the physiological performance, energetics, foraging, migration, habitat selection, and sociality of wild animals, as well as collect data on the environments in which they live.

395 citations


Journal ArticleDOI
01 Feb 2015-Ecology
TL;DR: A new probabilistic method for determining niche region and pairwise niche overlap that can be extended beyond two dimensions, provides directional estimates of niche overlap, accounts for species-specific distributions in niche space, and, unlike geometric methods, produces consistent and unique bivariate projections of multivariate data.
Abstract: Considerable progress has been made in the development of statistical tools to quantify trophic relationships using stable isotope ratios, including tools that address size and overlap of isotopic niches. We build upon recent progress and propose a new probabilistic method for determining niche region and pairwise niche overlap that can be extended beyond two dimensions, provides directional estimates of niche overlap, accounts for species-specific distributions in niche space, and, unlike geometric methods, produces consistent and unique bivariate projections of multivariate data. We define the niche region (NR) as a given 95% (or user-defined a) probability region in multivariate space. Overlap is calculated as the probability that an individual from species A is found in the N(R) of species B. Uncertainty is accounted for in a Bayesian framework, and is the only aspect of the methodology that depends on sample size. Application is illustrated with three-dimensional stable isotope data, but practitioners could use any continuous indicator of ecological niche in any number of dimensions. We suggest that this represents an advance in our ability to quantify and compare ecological niches in a way that is more consistent with Hutchinson's concept of an "n-dimensional hypervolume".

285 citations


Journal ArticleDOI
01 May 2015-Ecology
TL;DR: This work derives an autocorrelated KDE (AKDE) from first principles to use autcorrelated data, making it perfectly suited for movement data sets, and illustrates the vastly improved performance of AKDE using analytical arguments, relocation data from Mongolian gazelles, and simulations based upon the gazelle's observed movement process.
Abstract: Quantifying animals' home ranges is a key problem in ecology and has important conservation and wildlife management applications. Kernel density estimation (KDE) is a workhorse technique for range delineation problems that is both statistically efficient and nonparametric. KDE assumes that the data are independent and identically distributed (IID). However, animal tracking data, which are routinely used as inputs to KDEs, are inherently autocorrelated and violate this key assumption. As we demonstrate, using realistically autocorrelated data in conventional KDEs results in grossly underestimated home ranges. We further show that the performance of conventional KDEs actually degrades as data quality improves, because autocorrelation strength increases as movement paths become more finely resolved. To remedy these flaws with the traditional KDE method, we derive an autocorrelated KDE (AKDE) from first principles to use autocorrelated data, making it perfectly suited for movement data sets. We illustrate the vastly improved performance of AKDE using analytical arguments, relocation data from Mongolian gazelles, and simulations based upon the gazelle's observed movement process. By yielding better minimum area estimates for threatened wildlife populations, we believe that future widespread use of AKDE will have significant impact on ecology and conservation biology.

264 citations


Journal ArticleDOI
01 Nov 2015-Ecology
TL;DR: In this article, a normalized and consolidated database of up to 29 life-history parameters, containing at least one life history parameter for 21 species of birds, mammals, and reptiles, was created.
Abstract: Studying life-history traits within and across taxonomic classifications has revealed many interesting and important patterns, but this approach to life history requires access to large compilations of data containing many different life-history parameters. Currently, life-history data for amniotes (birds, mammals, and reptiles) are split among a variety of publicly available databases, data tables embedded in individual papers and books, and species-specific studies by experts. Using data from this wide range of sources is a challenge for conducting macroecological studies because of a lack of standardization in taxonomic classifications, parameter values, and even in which parameters are reported. In order to facilitate comparative analyses between amniote life-history data, we created a database compiled from peer-reviewed studies on individual species, macroecological studies of multiple species, existing life-history databases, and other aggregated sources as well as published books and other compilations. First, we extracted and aggregated the raw data from the aforementioned sources. Next, we resolved spelling errors and other formatting inconsistencies in species names through a number of computational and manual methods. Once this was completed, subspecies-level data and species-level data were shared via a data-sharing algorithm to accommodate the variety of species transformations (taxonomic promotions, demotions, merges, divergences, etc.) that have occurred over time. Finally, in species where multiple raw data points were identified for a given parameter, we report the median value. Here, we report a normalized and consolidated database of up to 29 life-history parameters, containing at least one life-history parameter for 21 322 species of birds, mammals, and reptiles.

263 citations


Journal ArticleDOI
01 Jan 2015-Ecology
TL;DR: This work focuses on conceptual models that, when considered in the context of acidification, yield explicit predictions regarding a spectrum of population- and community-level effects, from narrowing of species ranges and shifts in patterns of demographic connectivity, to modified consumer-resource relationships, to ascendance of weedy taxa and loss of species diversity.
Abstract: Ocean acidification, chemical changes to the carbonate system of seawater, is emerging as a key environmental challenge accompanying global warming and other human-induced perturbations. Considerable research seeks to define the scope and character of potential outcomes from this phenomenon, but a crucial impediment persists. Ecological theory, despite its power and utility, has been only peripherally applied to the problem. Here we sketch in broad strokes several areas where fundamental principles of ecology have the capacity to generate insight into ocean acidification's consequences. We focus on conceptual models that, when considered in the context of acidification, yield explicit predictions regarding a spectrum of population- and community-level effects, from narrowing of species ranges and shifts in patterns of demographic connectivity, to modified consumer–resource relationships, to ascendance of weedy taxa and loss of species diversity. Although our coverage represents only a small fraction of the breadth of possible insights achievable from the application of theory, our hope is that this initial foray will spur expanded efforts to blend experiments with theoretical approaches. The result promises to be a deeper and more nuanced understanding of ocean acidification and the ecological changes it portends.

202 citations


Journal ArticleDOI
01 May 2015-Ecology
TL;DR: The empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession, and the amount of vegetation in a site is the major driver of changes.
Abstract: Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity, actual litter decomposition, and potential litter decomposition) during secondary succession after shifting cultivation in wet tropical forest of Mexico. We test the importance of three alternative drivers of ecosystem processes: vegetation biomass (vegetation quantity hypothesis), community-weighted trait mean (mass ratio hypothesis), and functional diversity (niche complementarity hypothesis) using structural equation modeling. This allows us to infer the relative importance of different mechanisms underlying ecosystem process recovery. Ecosystem process rates changed during succession, and the strongest driver was aboveground biomass for each of the processes. Productivity of aboveground stem biomass and leaf litter as well as actual litter decomposition increased with initial standing vegetation biomass, whereas potential litter decomposition decreased with standing biomass. Additionally, biomass productivity was positively affected by community-weighted mean of specific leaf area, and potential decomposition was positively affected by functional divergence, and negatively by community-weighted mean of leaf dry matter content. Our empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession. Instead, simply, the amount of vegetation in a site is the major driver of changes, perhaps because there is a steep biomass buildup during succession that overrides more subtle effects of community functional properties on ecosystem processes. We recommend future studies in the field of biodiversity and ecosystem functioning to separate the effects of vegetation quality (community-weighted mean trait values and functional diversity) from those of vegetation quantity (biomass) on ecosystem processes and services.

196 citations


Journal ArticleDOI
01 Feb 2015-Ecology
TL;DR: It is indicated that fertilization decreases plant nutrient resorption and the view that nutrient Resorption is a critical nutrient conservation strategy for plants in nutrient-poor environments cannot be abandoned.
Abstract: Plants in infertile habitats are thought to have a high rate of nutrient resorption to enable them reuse nutrients more efficiently than those in fertile habitats. However, there is still much debate on how plant nutrient resorption responds to nutrient availability. Here we used a meta-analysis from a global data set of 9703 observations at 306 sites from 508 published articles to examine the effects of nitrogen (N) and phosphorus (P) fertilization on plant foliar N and P concentrations and resorption efficiency. We found that N fertilization enhanced N concentration in green leaves by 27% and P fertilization enhanced green-leaf P by 73% on average. The N and P concentrations in senesced leaves also increased with respective nutrient fertilization. Resorption efficiencies (percentage of nutrient recovered from senescing leaves) of both N and P declined in response to respective nutrient fertilization. Combined N and P fertilization also had negative effects on both N and P resorption efficiencies. Whether nutrient resorption efficiency differs among plant growth types and among ecosystems, however, remains uncertain due to the limited sample sizes when analyzed by plant growth types or ecosystem types. Our analysis indicates that fertilization decreases plant nutrient resorption and the view that nutrient resorption is a critical nutrient conservation strategy for plants in nutrient-poor environments cannot be abandoned. The response values to fertilization presented in our analysis can help improve biogeochemical models.

184 citations


Journal ArticleDOI
01 Jan 2015-Ecology
TL;DR: Examination of soil bacterial community composition and diversity in relation to plant "host" species, plant community richness, bacterial antagonists, and soil edaphic characteristics suggests that plant species influences on soil bacterial communities depend on plant community diversity and are mediated through the effects of plant-derived resources on antagonistic soil microbes.
Abstract: Plant species, plant community diversity and microbial interactions can significantly impact soil microbial communities, yet there are few data on the interactive effects of plant species and plant community diversity on soil bacterial communities. We hypothesized that plant species and plant community diversity affect soil bacterial communities by setting the context in which bacterial interactions occur. Specifically, we examined soil bacterial community composition and diversity in relation to plant "host" species, plant community richness, bacterial antagonists, and soil edaphic characteristics. Soil bacterial communities associated with four different prairie plant species (Andropogon gerardii, Schizachyrium scoparium, Lespedeza capitata, and' Lupinus perennis) grown in plant communities of increasing species richness (1, 4, 8, and 16 species) were sequenced. Additionally, soils were evaluated for populations of antagonistic bacteria and edaphic characteristics. Plant species effects on soil bacterial community composition were small and depended on plant community richness. In contrast, increasing plant community richness significantly altered soil bacterial community composition and was negatively correlated with bacterial diversity. Concentrations of soil carbon, organic matter, nitrogen, phosphorus, and potassium were similarly negatively correlated with bacterial diversity, whereas the proportion of antagonistic bacteria was positively correlated with soil bacterial diversity. Results suggest that plant species influences on soil bacterial communities depend on plant community diversity and are mediated through the effects of plant-derived resources on antagonistic soil microbes.

177 citations


Journal ArticleDOI
01 Jan 2015-Ecology
TL;DR: The results suggest that non-trophic interactions exhibit highly nonrandom structures both alone and with respect to food web structure, which suggests a path forward for developing a more comprehensive ecological network theory to predict the functioning and resilience of ecological communities.
Abstract: How multiple types of non-trophic interactions map onto trophic networks in real communities remains largely unknown. We present the first effort, to our knowledge, describing a comprehensive ecological network that includes all known trophic and diverse non-trophic links among >100 coexisting species for the marine rocky intertidal community of the central Chilean coast. Our results suggest that non-trophic interactions exhibit highly nonrandom structures both alone and with respect to food web structure. The occurrence of different types of interactions, relative to all possible links, was well predicted by trophic structure and simple traits of the source and target species. In this community, competition for space and positive interactions related to habitat/refuge provisioning by sessile and/or basal species were by far the most abundant non-trophic interactions. If these patterns are orroborated in other ecosystems, they may suggest potentially important dynamic constraints on the combined architecture of trophic and non-trophic interactions. The nonrandom patterning of non-trophic interactions suggests a path forward for developing a more comprehensive ecological network theory to predict the functioning and resilience of ecological communities.

174 citations


Journal ArticleDOI
01 May 2015-Ecology
TL;DR: It is found that multispatial CCM successfully detects causal relationships with as few as five sequential observations, even in the presence of process noise and observation error, suggesting that this technique may constitute a useful test for causality in systems where experiments are difficult to perform and long time series are not available.
Abstract: Recent developments in complex systems analysis have led to new techniques for detecting causal relationships using relatively short time series, on the order of 30 sequential observations. Although many ecological observation series are even shorter, perhaps fewer than ten sequential observations, these shorter time series are often highly replicated in space (i.e., plot replication). Here, we combine the existing techniques of convergent cross mapping (CCM) and dewdrop regression to build a novel test of causal relations that leverages spatial replication, which we call multispatial CCM. Using examples from simulated and real-world ecological data, we test the ability of multispatial CCM to detect causal relationships between processes. We find that multispatial CCM successfully detects causal relationships with as few as five sequential observations, even in the presence of process noise and observation error. Our results suggest that this technique may constitute a useful test for causality in systems where experiments are difficult to perform and long time series are not available. This new technique is available in the multispatialCCM package for the R programming language.

Journal ArticleDOI
01 Mar 2015-Ecology
TL;DR: The path analysis revealed that naturalization of central European plants in North America most strongly depends on residence time in the invaded range and the number of habitats occupied by species in their native range, and that a failure to consider residence time or characteristics of the native range may seriously overestimate the role of biological traits, which may result in spurious predictions of plant invasiveness.
Abstract: The factors that promote invasive behavior in introduced plant species occur across many scales of biological and ecological organization. Factors that act at relatively small scales, for example, the evolution of biological traits associated with invasiveness, scale up to shape species distributions among different climates and habitats, as well as other characteristics linked to invasion, such as attractiveness for cultivation (and by extension propagule pressure). To identify drivers of invasion it is therefore necessary to disentangle the contribution of multiple factors that are interdependent. To this end, we formulated a conceptual model describing the process of invasion of central European species into North America based on a sequence of "drivers." We then used confirmatory path analysis to test whether the conceptual model is supported by a statistical model inferred from a comprehensive database containing 466 species. The path analysis revealed that naturalization of central European plants in North America, in terms of the number of North American regions invaded, most strongly depends on residence time in the invaded range and the number of habitats occupied by species in their native range. In addition to the confirmatory path analysis, we identified the effects of various biological traits on several important drivers of the conceptualized invasion process. The data supported a model that included indirect effects of biological traits on invasion via their effect on the number of native range habitats occupied and cultivation in the native range. For example, persistent seed banks and longer flowering periods are positively correlated with number of native habitats, while a stress-tolerant life strategy is negatively correlated with native range cultivation. However, the importance of the biological traits is nearly an order of magnitude less than that of the larger scale drivers and highly dependent on the invasion stage (traits were associated only with native range drivers). This suggests that future research should explicitly link biological traits to the different stages of invasion, and that a failure to consider residence time or characteristics of the native range may seriously overestimate the role of biological traits, which, in turn, may result in spurious predictions of plant invasiveness.

Journal ArticleDOI
01 Apr 2015-Ecology
TL;DR: The results show that resource competition suppresses invasion, biodiversity increases resource competition and decreases invasion through niche preemption, and resource pulses that cannot be fully used, even by diverse communities, are favorable to invasion.
Abstract: The roles of species richness, resource use, and resource availability are central to many hypotheses explaining the diversity-invasion phenomenon but are generally not investigated together. Here, we created a large diversity gradient of soil microbial communities by either assembling communities of pure bacterial strains or removing the diversity of a natural soil. Using data on the resource-use capacities of the soil communities and an invader that were gathered from 71 carbon sources, we quantified the niches available to both constituents by using the metrics community niche and remaining niche available to the invader. A strong positive relationship between species richness and community niche across both experiments indicated the presence of resource complementarity. Moreover, community niche and the remaining niche available to the invader predicted invader abundance well. This suggested that increased competition in communities of higher diversity limits community invasibility and underscored the importance of resource availability as a key mechanism through which diversity hinders invasions. As a proof of principle, we subjected selected invaded communities to a resource pulse, which progressively uncoupled the link between soil microbial diversity and invasion and allowed the invader to rebound after nearly being eliminated in some communities. Our results thus show that (1) resource competition suppresses invasion, (2) biodiversity increases resource competition and decreases invasion through niche preemption, and (3) resource pulses that cannot be fully used, even by diverse communities, are favorable to invasion.

Journal ArticleDOI
01 Jan 2015-Ecology
TL;DR: It is indicated that ascomycetes may have a prominent role in wood decay, but their wood-degrading abilities need to be further tested under controlled conditions and that the strength of competitive interactions between fungi in decaying tree stumps may level off with increased wood decay.
Abstract: Decomposition of wood is an important component of global carbon cycling. Most wood decomposition models are based on tree characteristics and environmental conditions; however, they do not include community dynamics of fungi that are the major wood decomposers. We examined the factors explaining variation in sapwood decay in oak tree stumps two and five years after cutting. Wood moisture content was significantly correlated with sapwood decay in younger stumps, whereas ITS-based composition and species richness of the fungal community were the best predictors for mass loss in the older stumps. Co-occurrence analysis showed that, in freshly cut trees and in younger stumps, fungal communities were nonrandomly structured, whereas fungal communities in old stumps could not be separated from a randomly assembled community. These results indicate that the most important factors explaining variation in wood decay rates can change over time and that the strength of competitive interactions between fungi in decaying tree stumps may level off with increased wood decay. Our field analysis further suggests that ascomycetes may have a prominent role in wood decay, but their wood-degrading abilities need to be further tested under controlled conditions. The next challenging step will be to integrate fungal community assembly processes in wood decay models to improve carbon sequestration estimates of forests.

Journal ArticleDOI
01 Nov 2015-Ecology
TL;DR: The results of this study show that marine macroalgae do contain refractory compounds and thus may be more valuable to long-term carbon sequestration than the authors previously have considered.
Abstract: Many marine ecosystems have the capacity for long-term storage of organic carbon (C) in what are termed "blue carbon" systems. While blue carbon systems (saltmarsh, mangrove, and seagrass) are efficient at long-term sequestration of organic carbon (C), much of their sequestered C may originate from other (allochthonous) habitats. Macroalgae, due to their high rates of production, fragmentation, and ability to be transported, would also appear to be able to make a significant contribution as C donors to blue C habitats. In order to assess the stability of macroalgal tissues and their likely contribution to long-term pools of C, we applied thermogravimetric analysis (TGA) to 14 taxa of marine macroalgae and coastal vascular plants. We assessed the structural complexity of multiple lineages of plant and tissue types with differing cell wall structures and found that decomposition dynamics varied significantly according to differences in cell wall structure and composition among taxonomic groups and tissue function (photosynthetic vs. attachment). Vascular plant tissues generally exhibited greater stability with a greater proportion of mass loss at temperatures > 300 degrees C (peak mass loss -320 degrees C) than macroalgae (peak mass loss between 175-300 degrees C), consistent with the lignocellulose matrix of vascular plants. Greater variation in thermogravimetric signatures within and among macroalgal taxa, relative to vascular plants, was also consistent with the diversity of cell wall structure and composition among groups. Significant degradation above 600 degrees C for some macroalgae, as well as some belowground seagrass tissues, is likely due to the presence of taxon-specific compounds. The results of this study highlight the importance of the lignocellulose matrix to the stability of vascular plant sources and the potentially significant role of refractory, taxon-specific compounds (carbonates, long-chain lipids, alginates, xylans, and sulfated polysaccharides) from macroalgae and seagrasses for their long-term sedimentary C storage. This study shows that marine macroalgae do contain refractory compounds and thus may be more valuable to long-term carbon sequestration than we previously have considered.

Journal ArticleDOI
01 Jan 2015-Ecology
TL;DR: The results suggest that the fundamental temperature ranges of soil microbial communities may be sufficiently broad to buffer their functioning against changes in temperature and that plant diversity may be a dominant control of soil microbes processes in a changing world.
Abstract: Anthropogenic changes in biodiversity and atmospheric temperature signifi- cantly influence ecosystem processes. However, little is known about potential interactive effects of plant diversity and warming on essential ecosystem properties, such as soil microbial functions and element cycling. We studied the effects of orthogonal manipulations of plant diversity (one, four, and 16 species) and warming (ambient, þ1.58C, and þ38C) on soil microbial biomass, respiration, growth after nutrient additions, and activities of extracellular enzymes in 2011 and 2012 in the BAC (biodiversity and climate) perennial grassland experiment site at Cedar Creek, Minnesota, USA. Focal enzymes are involved in essential biogeochemical processes of the carbon, nitrogen, and phosphorus cycles. Soil microbial biomass and some enzyme activities involved in the C and N cycle increased significantly with increasing plant diversity in both years. In addition, 16-species mixtures buffered warming induced reductions in topsoil water content. We found no interactive effects of plant diversity and warming on soil microbial biomass and growth rates. However, the activity of several enzymes (1,4-b-glucosidase, 1,4-b-N-acetylglucosaminidase, phosphatase, peroxidase) de- pended on interactions between plant diversity and warming with elevated activities of enzymes involved in the C, N, and P cycles at both high plant diversity and high warming levels. Increasing plant diversity consistently decreased microbial biomass-specific enzyme activities and altered soil microbial growth responses to nutrient additions, indicating that plant diversity changed nutrient limitations and/or microbial community composition. In contrast to our expectations, higher plant diversity only buffered temperature effects on soil water content, but not on microbial functions. Temperature effects on some soil enzymes were greatest at high plant diversity. In total, our results suggest that the fundamental temperature ranges of soil microbial communities may be sufficiently broad to buffer their functioning against changes in temperature and that plant diversity may be a dominant control of soil microbial processes in a changing world.

Journal ArticleDOI
01 Feb 2015-Ecology
TL;DR: This work presents a comprehensive Antifungal Isolates Database of amphibian skin-associated bacteria that have been cultured, isolated, and tested for antif fungus properties, and provides empirical data for comparative and bioinformatic studies.
Abstract: Microbial symbionts of vertebrate skin have an important function in defense of the host against pathogens. In particular, the emerging chytrid fungus Batrachochytrium dendrobatidis, causes widespread disease in amphibians but can be inhibited via secondary metabolites produced by many different skin-associated bacteria. Similarly, the fungal pathogens of terrestrial salamander eggs Mariannaea elegans and Rhizomucor variabilis are also inhibited by a variety of skin-associated bacteria. Indeed, probiotic therapy against fungal diseases is a recent approach in conservation medicine with growing experimental support. We present a comprehensive Antifungal Isolates Database of amphibian skin-associated bacteria that have been cultured, isolated, and tested for antifungal properties. At the start, this database includes nearly 2000 cultured bacterial isolates from 37 amphibian host species across 18 studies on five continents: Africa, Oceania, Europe, and North and South America. As the research community gathers information on additional isolates, the database will be updated periodically. The resulting database can serve as a conservation tool for amphibians and other organisms, and provides empirical data for comparative and bioinformatic studies. The database consists of a FASTA file containing 16S rRNA gene sequences of the bacterial isolates, and a metadata file containing information on the host species, life-stage, geographic region, and antifungal capacity and taxonomic identity of the isolate.

Journal ArticleDOI
01 Dec 2015-Ecology
TL;DR: Observations demonstrate that plants govern the turnover of soil fungal communities and functional characteristics during secondary succession, due to the continual input of detritus and differences in litter biochemistry among plant species.
Abstract: Although we understand the ecological processes eliciting changes in plant community composition during secondary succession, we do not understand whether co-occurring changes in plant detritus shape saprotrophic microbial communities in soil. In this study, we investigated soil microbial composition and function across an old-field chronosequence ranging from 16 to 86 years following agricultural abandonment, as well as three forests representing potential late-successional ecosystems. Fungal and bacterial community composition was quantified from ribosomal DNA, and insight into the functional potential of the microbial community to decay plant litter was gained from shotgun metagenomics and extracellular enzyme assays. Accumulation of soil organic matter across the chronosequence exerted a positive and significant effect on fungal phylogenetic β-diversity and the activity of extracellular enzymes with lignocellulolytic activity. In addition, the increasing abundance of lignin-rich C4 grasses was positively related to the composition of fungal genes with lignocellulolytic function, thereby linking plant community composition, litter biochemistry, and microbial community function. However, edaphic properties were the primary agent shaping bacterial communities, as bacterial β-diversity and variation in functional gene composition displayed a significant and positive relationship to soil pH across the chronosequence. The late-successional forests were compositionally distinct from the oldest old fields, indicating that substantial changes occur in soil microbial communities as old fields give way to forests. Taken together, our observations demonstrate that plants govern the turnover of soil fungal communities and functional characteristics during secondary succession, due to the continual input of detritus and differences in litter biochemistry among plant species.

Journal ArticleDOI
01 Jun 2015-Ecology
TL;DR: Long-term monitoring, manipulative experiments, and process modeling of climate-induced phenological changes on herbivorous insect pests, their host tree species, and natural enemies in northern forests are crucial to predicting species range shifts and assessing ecological and economic impacts.
Abstract: Climate change is altering insect disturbance regimes via temperature-mediated phenological changes and trophic interactions among host trees, herbivorous insects, and their natural enemies in boreal forests. Range expansion and increase in outbreak severity of forest insects are occurring in Europe and North America. The degree to which northern forest ecosystems are resilient to novel disturbance regimes will have direct consequences for the provisioning of goods and services from these forests and for long-term forest management planning. Among major ecological disturbance agents in the boreal forests of North America is a tortricid moth, the eastern spruce budworm, which defoliates fir (Abies spp.) and spruce (Picea spp.). Northern expansion of this defoliator in eastern North America and climate-induced narrowing of the phenological mismatch between the insect and its secondary host, black spruce (Picea mariana), may permit greater defoliation and mortality in extensive northern black spruce forests. Although spruce budworm outbreak centers have appeared in the boreal black spruce zone historically, defoliation and mortality were minor. Potential increases in outbreak severity and tree mortality raise concerns about the future state of this northern ecosystem. Severe spruce budworm outbreaks could decrease stand productivity compared with their occurrence in more diverse, southern balsam fir forest landscapes that have coevolved with outbreaks. Furthermore, depending on the proportion of balsam fir and deciduous species present and fire recurrence, changes in regeneration patterns and in nutrient cycling could alter ecosystem dynamics and replace black spruce by more productive mixed-wood forest, or by less productive ericaceous shrublands. Long-term monitoring, manipulative experiments, and process modeling of climate-induced phenological changes on herbivorous insect pests, their host tree species, and natural enemies in northern forests are therefore crucial to predicting species range shifts and assessing ecological and economic impacts.

Journal ArticleDOI
01 Jun 2015-Ecology
TL;DR: In this article, the authors used an international multiscale data set to show that atmospheric nitrogen deposition is positively correlated to aboveground net primary production (ANPP) observed at the 1-m 2 level across a wide range of herbaceous ecosystems.
Abstract: Humans dominate many important Earth system processes including the nitrogen (N) cycle. Atmospheric N deposition affects fundamental processes such as carbon cycling, climate regulation, and biodiversity, and could result in changes to fundamental Earth system processes such as primary production. Both modelling and experimentation have suggested a role for anthropogenically altered N deposition in increasing productivity, nevertheless, current understanding of the relative strength of N deposition with respect to other controls on production such as edaphic conditions and climate is limited. Here we use an international multiscale data set to show that atmospheric N deposition is positively correlated to aboveground net primary production (ANPP) observed at the 1-m 2 level across a wide range of herbaceous ecosystems. N deposition was a better predictor than climatic drivers and local soil conditions, explaining 16% of observed variation in ANPP globally with an increase of 1 kg Nha � 1 � yr � 1 increasing ANPP by 3%. Soil pH explained 8% of observed variation in ANPP while climatic drivers showed no significant relationship. Our results illustrate that the incorporation of global N deposition patterns in Earth system models are likely to substantially improve estimates of primary production in herbaceous systems. In herbaceous systems across the world, humans appear to be partially driving local ANPP through impacts on the N cycle.

Journal ArticleDOI
01 Nov 2015-Ecology
TL;DR: It is hypothesized that site familiarity, accrued early in-life, causes IFSF by canalizing subsequent foraging decisions, with far-reaching consequences for attempts to understand and conserve these animals in a rapidly changing environment.
Abstract: Many established models of animal foraging assume that individuals are ecologically equivalent. However, it is increasingly recognized that populations may comprise individuals who differ consistently in their diets and foraging behaviors. For example, recent studies have shown that individual foraging site fidelity (IFSF, when individuals consistently forage in only a small part of their population's home range) occurs in some colonial breeders. Short-term IFSF could result from animals using a win–stay, lose–shift foraging strategy. Alternatively, it may be a consequence of individual specialization. Pelagic seabirds are colonial central-place foragers, classically assumed to use flexible foraging strategies to target widely dispersed, spatiotemporally patchy prey. However, tracking has shown that IFSF occurs in many seabirds, although it is not known whether this persists across years. To test for long-term IFSF and to examine alternative hypotheses concerning its cause, we repeatedly tracked 55 Northern Gannets (Morus bassanus) from a large colony in the North Sea within and across three successive breeding seasons. Gannets foraged in neritic waters, predictably structured by tidal mixing and thermal stratification, but subject to stochastic, wind-induced overturning. Both within and across years, coarse to mesoscale (tens of kilometers) IFSF was significant but not absolute, and foraging birds departed the colony in individually consistent directions. Carbon stable isotope ratios in gannet blood tissues were repeatable within years and nitrogen ratios were also repeatable across years, suggesting long-term individual dietary specialization. Individuals were also consistent across years in habitat use with respect to relative sea surface temperature and in some dive metrics, yet none of these factors accounted for IFSF. Moreover, at the scale of weeks, IFSF did not decay over time and the magnitude of IFSF across years was similar to that within years, suggesting that IFSF is not primarily the result of win–stay, lose–shift foraging. Rather, we hypothesize that site familiarity, accrued early in life, causes IFSF by canalizing subsequent foraging decisions. Evidence from this and other studies suggests that IFSF may be common in colonial central-place foragers, with far-reaching consequences for our attempts to understand and conserve these animals in a rapidly changing environment.

Journal ArticleDOI
01 Aug 2015-Ecology
TL;DR: Two new bias-corrected estimators are derived that retain much of the original utility of the response ratio and are aimed to improve the quality and reliability of inferences with effect sizes based on the log ratio of two means.
Abstract: Ecologists widely use the log response ratio for summarizing the outcomes of studies for meta-analysis. However, little is known about the sampling distribution of this effect size estimator. Here I show with a Monte Carlo simulation that the log response ratio is biased when quantifying the outcome of studies with small sample sizes, and can yield erroneous variance estimates when the scale of study parameters are near zero. Given these challenges, I derive and compare two new estimators that help correct this small-sample bias, and update guidelines and diagnostics for assessing when the response ratio is appropriate for ecological meta-analysis. These new bias-corrected estimators retain much of the original utility of the response ratio and are aimed to improve the quality and reliability of inferences with effect sizes based on the log ratio of two means.

Journal ArticleDOI
01 Jan 2015-Ecology
TL;DR: This work studied masting in the valley oak, a California endemic tree, and reports evidence that phenological synchrony in flowering driven by microclimatic variability determines the size of the acorn crop through its effects on pollen availability and fertilization success.
Abstract: Annually variable and synchronous seed production, or masting behavior, is a widespread phenomenon with dramatic effects on wildlife populations and their associated communities. Proximally, masting is often correlated with environmental factors and most likely involves differential pollination success and resource allocation, but little is known about how these factors interact or how they influence seed production. We studied masting in the valley oak (Quercus lobata Nee), a California endemic tree, and report evidence that phenological synchrony in flowering driven by microclimatic variability determines the size of the acorn crop through its effects on pollen availability and fertilization success. These findings integrate two of the major factors believed to influence seed production in wind-pollinated species—environmental conditions and pollen limitation—by means of a coherent mechanistic hypothesis for how highly variable and synchronized annual seed production is accomplished. We illustrate how, by means of a simulation based on the mechanism proposed here, climate change may influence masting patterns through its effects on environmental variability.

Journal ArticleDOI
Daniel S. Falster1, Remko A. Duursma2, Masae Iwamoto Ishihara3, Diego R. Barneche1, Richard G. FitzJohn1, Angelica Vårhammar2, Masahiro Aiba4, Makoto Ando5, Niels P. R. Anten, Michael J. Aspinwall2, Jennifer L. Baltzer6, Christopher Baraloto, Michael Battaglia7, John J. Battles8, Ben Bond-Lamberty9, Michiel van Breugel10, James S. Camac1, Yves Claveau11, Lluís Coll, Masako Dannoura5, Sylvain Delagrange12, Jean-Christophe Domec13, F. R. Fatemi, Wang Feng, Veronica Beatriz Gargaglione14, Yoshiaki Goto, Akio Hagihara15, Jefferson S. Hall16, Steve Hamilton, Degi Harja17, Tsutom Hiura18, Robert J. Holdaway19, Lindsay S. Hutley20, Tomoaki Ichie21, Eric J. Jokela22, Anu Kantola23, Jeff W. G. Kelly24, Tanaka Kenzo, David A. King25, Brian D. Kloeppel26, Takashi Kohyama18, Akira Komiyama27, Jean-Paul Laclau, Christopher H. Lusk28, Douglas A. Maguire25, Guerric Le Maire, Annikki Mäkelä29, Lars Markesteijn30, John D. Marshall31, Katherine A. McCulloh32, Itsuo Miyata33, Karel Mokany7, Shigeta Mori34, Randall W. Myster, Masahiro Nagano35, Shawna L. Naidu36, Yann Nouvellon37, Anthony P. O'Grady7, Kevin L. O'Hara8, Toshiyuki Ohtsuka27, Noriyuki Osada18, Olusegun O. Osunkoya38, Pablo Luis Peri, Any Mary Petritan39, Lourens Poorter40, Angelika Portsmuth41, Catherine Potvin42, Johannes Ransijn43, Johannes Ransijn44, Douglas E. B. Reid45, Sabina Cerruto Ribeiro46, Scott D. Roberts47, Rolando Rodríguez48, Angela Saldaña-Acosta, Ignacio Santa-Regina49, Kaichiro Sasa18, N. Galia Selaya, Stephen C. Sillett50, Frank Sterck40, Kentaro Takagi18, Takeshi Tange51, Hiroyuki Tanouchi, David T. Tissue2, Toru Umehara52, Hajime Utsugi, Matthew A. Vadeboncoeur53, Fernando Valladares49, Petteri Vanninen54, Jian R. Wang55, Elizabeth Wenk1, Richard J. Williams7, Fabiano de Aquino Ximenes, Atsushi Yamaba, Toshihiro Yamada3, Takuo Yamakura35, Ruth D. Yanai56, Robert A. York8 
Macquarie University1, University of Sydney2, Hiroshima University3, Tohoku University4, Kyoto University5, Wilfrid Laurier University6, Commonwealth Scientific and Industrial Research Organisation7, University of California, Berkeley8, Joint Global Change Research Institute9, Smithsonian Tropical Research Institute10, Université du Québec à Montréal11, Université du Québec en Outaouais12, International Sleep Products Association13, National University of Austral Patagonia14, University of the Ryukyus15, Smithsonian Institution16, World Agroforestry Centre17, Hokkaido University18, Landcare Research19, Charles Darwin University20, Kōchi University21, University of Florida22, Finnish Forest Research Institute23, University of Alberta24, Oregon State University25, Western Carolina University26, Gifu University27, University of Waikato28, University of Helsinki29, University of Oxford30, Swedish University of Agricultural Sciences31, University of Wisconsin-Madison32, Kyushu University33, Yamagata University34, Osaka City University35, University of Illinois at Urbana–Champaign36, University of São Paulo37, James Cook University38, University of Göttingen39, Wageningen University and Research Centre40, Tallinn University41, McGill University42, University of Copenhagen43, University of Bayreuth44, Natural Resources Canada45, Universidade Federal do Acre46, Mississippi State University47, University of Concepción48, Spanish National Research Council49, Humboldt State University50, University of Tokyo51, University of Hyogo52, University of New Hampshire53, University of Eastern Finland54, Lakehead University55, State University of New York Upstate Medical University56
01 May 2015-Ecology
TL;DR: The Biomass And Allometry Database (BAAD) as discussed by the authors is a large-scale dataset for woody plants that contains 259, 634 measurements collected in 176 different studies, from 21,084 individuals across 678 species.
Abstract: Understanding how plants are constructed—i.e., how key size dimensions and the amount of mass invested in different tissues varies among individuals—is essential for modeling plant growth, carbon stocks, and energy fluxes in the terrestrial biosphere. Allocation patterns can differ through ontogeny, but also among coexisting species and among species adapted to different environments. While a variety of models dealing with biomass allocation exist, we lack a synthetic understanding of the underlying processes. This is partly due to the lack of suitable data sets for validating and parameterizing models. To that end, we present the Biomass And Allometry Database (BAAD) for woody plants. The BAAD contains 259 634 measurements collected in 176 different studies, from 21 084 individuals across 678 species. Most of these data come from existing publications. However, raw data were rarely made public at the time of publication. Thus, the BAAD contains data from different studies, transformed into standard units and variable names. The transformations were achieved using a common workflow for all raw data files. Other features that distinguish the BAAD are: (i) measurements were for individual plants rather than stand averages; (ii) individuals spanning a range of sizes were measured; (iii) plants from 0.01–100 m in height were included; and (iv) biomass was estimated directly, i.e., not indirectly via allometric equations (except in very large trees where biomass was estimated from detailed sub-sampling). We included both wild and artificially grown plants. The data set contains the following size metrics: total leaf area; area of stem cross-section including sapwood, heartwood, and bark; height of plant and crown base, crown area, and surface area; and the dry mass of leaf, stem, branches, sapwood, heartwood, bark, coarse roots, and fine root tissues. We also report other properties of individuals (age, leaf size, leaf mass per area, wood density, nitrogen content of leaves and wood), as well as information about the growing environment (location, light, experimental treatment, vegetation type) where available. It is our hope that making these data available will improve our ability to understand plant growth, ecosystem dynamics, and carbon cycling in the world's vegetation.

Journal ArticleDOI
01 Feb 2015-Ecology
TL;DR: A general framework to model false positives in occupancy studies and extend existing modeling approaches to encompass a broader range of sampling designs is established and three common sampling designs that are likely to cover most scenarios encountered by researchers are identified.
Abstract: The occurrence of false positive detections in presence-absence data, even when they occur infrequently, can lead to severe bias when estimating species occupancy patterns. Building upon previous efforts to account for this source of observational error, we established a general framework to model false positives in occupancy studies and extend existing modeling approaches to encompass a broader range of sampling designs. Specifically, we identified three common sampling designs that are likely to cover most scenarios encountered by researchers. The different designs all included ambiguous detections, as well as some known-truth data, but their modeling differed in the level of the model hierarchy at which the known-truth information was incorporated (site level or observation level). For each model, we provide the likelihood, as well as R and BUGS code needed for implementation. We also establish a clear terminology and provide guidance to help choosing the most appropriate design and modeling approach.

Journal ArticleDOI
01 Aug 2015-Ecology
TL;DR: Although plant species composition remains unchanged after 14 years of fertilization, fine-root characteristics responded to N, P, and K addition, providing some of the strongest stand-level responses in this experiment.
Abstract: Questions remain as to which soil nutrients limit primary production in tropical forests. Phosphorus (P) has long been considered the primary limiting element in lowland forests, but recent evidence demonstrates substantial heterogeneity in response to nutrient addition, highlighting a need to understand and diagnose nutrient limitation across diverse forests. Fine-root characteristics including their abundance, functional traits, and mycorrhizal symbionts can be highly responsive to changes in soil nutrients and may help to diagnose nutrient limitation. Here, we document the response of fine roots to long-term nitrogen (N), P, and potassium (K) fertilization in a lowland forest in Panama. Because this experiment has demonstrated that N and K together limit tree growth and P limits fine litter production, we hypothesized that fine roots would also respond to nutrient addition. Specifically we hypothesized that N, P, and K addition would reduce the biomass, diameter, tissue density, and mycorrhizal colonization of fine roots, and increase nutrient concentration in root tissue. Most morphological root traits responded to the single addition of K and the paired addition of N and P, with the greatest response to all three nutrients combined. The addition of N, P, and K together reduced fine-root biomass, length, and tissue density, and increased specific root length, whereas root diameter remained unchanged. Nitrogen addition did not alter root N concentration, but P and K addition increased root P and K concentration, respectively. Mycorrhizal colonization of fine roots declined with N, increased with P, and was unresponsive to K addition. Although plant species composition remains unchanged after 14 years of fertilization, fine-root characteristics responded to N, P, and K addition, providing some of the strongest stand-level responses in this experiment. Multiple soil nutrients regulate fine-root abundance, morphological and chemical traits, and their association with mycorrhizal fungi in a species-rich lowland tropical forest.

Journal ArticleDOI
01 Mar 2015-Ecology
TL;DR: The results suggest that the LES alone is not a good predictor of microbial activity, whereas root traits appeared critical in understanding plant-microbe interactions.
Abstract: It has long been recognized that plant species and soil microorganisms are tightly linked, but understanding how different species vary in their effects on soil is currently limited. In this study, we identified those plant characteristics (identity, specific functional traits, or resource acquisition strategy) that were the best predictors of nitrification and denitrification processes. Ten plant populations representing eight species collected from three European grassland sites were chosen for their contrasting plant trait values and resource acquisition strategies. For each individual plant, leaf and root traits and the associated potential microbial activities (i.e., potential denitrification rate [DEA], maximal nitrification rate [NEA], and NH4+ affinity of the microbial community [NHScom]) were measured at two fertilization levels under controlled growth conditions. Plant traits were powerful predictors of plant–microbe interactions, but relevant plant traits differed in relation to the microbial f...

Journal ArticleDOI
01 Jul 2015-Ecology
TL;DR: It is demonstrated that low-severity fire can trigger a long-lasting induced defense that may increase tree survival from subsequent herbivory, and that resin duct production declines when fire ceases.
Abstract: Induced defense is a common plant strategy in response to herbivory. Although abiotic damage, such as physical wounding, pruning, and heating, can induce plant defense, the effect of such damage by large-scale abiotic disturbances on induced defenses has not been explored and could have important consequences for plant survival facing future biotic disturbances. Historically, low-severity wildfire was a widespread, frequent abiotic disturbance in many temperate coniferous forests. Native Dendroctonus and Ips bark beetles are also a common biotic disturbance agent in these forest types and can influence tree mortality patterns after wildfire. Therefore, species living in these disturbance-prone environments with strategies to survive both frequent fire and bark beetle attack should be favored. One such example is Pinus ponderosa forests of western North America. These forests are susceptible to bark beetle attack and frequent, low-severity fire was common prior to European settlement. However, since the late 1800s, frequent, low-severity fires have greatly decreased in these forests. We hypothesized that non-lethal, low-severity, wildfire induces resin duct defense in P. ponderosa and that lack of low-severity fire relaxes resin duct defense in forests dependent on frequent, low-severity fire. We first compared axial resin duct traits between trees that either survived or died from bark beetle attacks. Next, we studied axial ducts using tree cores with crossdated chronologies in several natural P. ponderosa stands before and after an individual wildfire and, also, before and after an abrupt change in fire frequency in the 20th century. We show that trees killed by bark beetles invested less in resin ducts relative to trees that survived attack, suggesting that resin duct-related traits provide resistance against bark beetles. We then show low-severity fire induces resin duct production, and finally, that resin duct production declines when fire ceases. Our results demonstrate that low-severity fire can trigger a long-lasting induced defense that may increase tree survival from subsequent herbivory.

Journal ArticleDOI
01 Nov 2015-Ecology
TL;DR: It is shown that functional diversity can be more accurate and effective than species richness in predicting community biomass in a food web context and that different species drove different ecosystem responses.
Abstract: The use of functional traits to explain how biodiversity affects ecosystem functioning has attracted intense interest, yet few studies have a priori altered functional diversity, especially in multitrophic communities. Here, we manipulated multivariate functional diversity of estuarine grazers and predators within multiple levels of species richness to test how species richness and functional diversity predicted ecosystem functioning in a multitrophic food web. Community functional diversity was a better predictor than species richness for the majority of ecosystem properties, based on generalized linear mixed-effects models. Combining inferences from eight traits into a single multivariate index increased prediction accuracy of these models relative to any individual trait. Structural equation modeling revealed that functional diversity of both grazers and predators was important in driving final biomass within trophic levels, with stronger effects observed for predators. We also show that different species drove different ecosystem responses, with evidence for both sampling effects and complementarity. Our study extends experimental investigations of functional trait diversity to a multilevel food web, and demonstrates that functional diversity can be more accurate and effective than species richness in predicting community biomass in a food web context.

Journal ArticleDOI
01 Jul 2015-Ecology
TL;DR: Because late-successional plants are very responsive to mycorrhizal fungi, the results suggest that fungal community dynamics may be an important driver of plant succession.
Abstract: Early-successional plant species invest in rapid growth and reproduction in contrast to slow growing late-successional species. We test the consistency of "trade-offs between plant life history and responsiveness on arbuscular mycorrhizal fungi. We selected four very early-, seven early-, 11 middle-, and eight late-successional plant species from six different families and functional groups and grew them with and without a mixed fungal inoculum and compared root architecture, mycorrhizal responsiveness, and plant growth rate. Our results indicate mycorrhizal responsiveness increases with plant successional stage and that this effect explains more variation in mycorrhizal response than is explained by phylogenetic relatedness. The mycorrhizal responsiveness of individual plant species was positively correlated with mycorrhizal root infection and negatively correlated with average plant mass and the number of root tips per unit mass, indicating that both plant growth rate and root architecture trade off with investment in mycorrhizal mutualisms. Because late-successional plants are very responsive to mycorrhizal fungi, our results suggest that fungal community dynamics may be an important driver of plant succession.