scispace - formally typeset
Search or ask a question

Showing papers in "Experimental Astronomy in 2009"


Journal ArticleDOI
TL;DR: The Search for Anomalous Gravitation using Atomic Sensors (SAGAS) project as mentioned in this paper aims at flying highly sensitive atomic sensors (optical clock, cold atom accelerometer, optical link) on a solar system escape trajectory in the 2020 to 2030 time-frame.
Abstract: We summarise the scientific and technological aspects of the Search for Anomalous Gravitation using Atomic Sensors (SAGAS) project, submitted to ESA in June 2007 in response to the Cosmic Vision 2015–2025 call for proposals. The proposed mission aims at flying highly sensitive atomic sensors (optical clock, cold atom accelerometer, optical link) on a Solar System escape trajectory in the 2020 to 2030 time-frame. SAGAS has numerous science objectives in fundamental physics and Solar System science, for example numerous tests of general relativity and the exploration of the Kuiper belt. The combination of highly sensitive atomic sensors and of the laser link well adapted for large distances will allow measurements with unprecedented accuracy and on scales never reached before. We present the proposed mission in some detail, with particular emphasis on the science goals and associated measurements and technologies.

130 citations


Journal ArticleDOI
TL;DR: The Space Infrared Telescope for Cosmology and Astrophysics (SPICA) as mentioned in this paper is the next space astronomy mission observing in the infrared which is planned to be launched in 2017 and will feature a 3.5 m telescope cooled to 30 microns wavelength.
Abstract: The Space Infrared telescope for Cosmology and Astrophysics (SPICA) is planned to be the next space astronomy mission observing in the infrared. The mission is planned to be launched in 2017 and will feature a 3.5 m telescope cooled to 30 microns wavelength). We describe the scientific advances that will be made possible by this large increase in sensitivity and give details of the mission, spacecraft and focal plane conceptual design.

130 citations


Journal ArticleDOI
TL;DR: The Einstein Gravity Explorer mission (EGE) as mentioned in this paper is devoted to a precise measurement of the properties of space-time using atomic clocks, and is based on a satellite carrying cold atom-based clocks, including a cesium microwave clock, an optical clock, a femtosecond frequency comb, as well as precise microwave time transfer systems between space and ground.
Abstract: The Einstein Gravity Explorer mission (EGE) is devoted to a precise measurement of the properties of space-time using atomic clocks. It tests one of the most fundamental predictions of Einstein’s Theory of General Relativity, the gravitational redshift, and thereby searches for hints of quantum effects in gravity, exploring one of the most important and challenging frontiers in fundamental physics. The primary mission goal is the measurement of the gravitational redshift with an accuracy up to a factor 104 higher than the best current result. The mission is based on a satellite carrying cold atom-based clocks. The payload includes a cesium microwave clock (PHARAO), an optical clock, a femtosecond frequency comb, as well as precise microwave time transfer systems between space and ground. The tick rates of the clocks are continuously compared with each other, and nearly continuously with clocks on earth, during the course of the 3-year mission. The highly elliptic orbit of the satellite is optimized for the scientific goals, providing a large variation in the gravitational potential between perigee and apogee. Besides the fundamental physics results, as secondary goals EGE will establish a global reference frame for the Earth’s gravitational potential and will allow a new approach to mapping Earth’s gravity field with very high spatial resolution. The mission was proposed as a class-M mission to ESA’s Cosmic Vision Program 2015–2025.

113 citations


Journal ArticleDOI
TL;DR: TandEM is designed to build on but exceed the scientific and technological accomplishments of the Cassini–Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time).
Abstract: TandEM was proposed as an L-class (large) mission in response to ESA’s Cosmic Vision 2015–2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini–Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini–Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (Montgolfiere) and possibly several landing probes to be delivered through the atmosphere.

92 citations


Journal ArticleDOI
TL;DR: In this article, the physical detector response of the Fermi Gamma-Ray Burst Monitor (GBM) is determined with the help of Monte Carlo simulations, which are supported and verified by on-ground individual detector calibration measurements.
Abstract: One of the scientific objectives of NASA’s Fermi Gamma-ray Space Telescope is the study of Gamma-Ray Bursts (GRBs). The Fermi Gamma-Ray Burst Monitor (GBM) was designed to detect and localize bursts for the Fermi mission. By means of an array of 12 NaI(Tl) (8 keV to 1 MeV) and two BGO (0.2 to 40 MeV) scintillation detectors, GBM extends the energy range (20 MeV to > 300 GeV) of Fermi’s main instrument, the Large Area Telescope, into the traditional range of current GRB databases. The physical detector response of the GBM instrument to GRBs is determined with the help of Monte Carlo simulations, which are supported and verified by on-ground individual detector calibration measurements. We present the principal instrument properties, which have been determined as a function of energy and angle, including the channel-energy relation, the energy resolution, the effective area and the spatial homogeneity.

85 citations


Journal ArticleDOI
TL;DR: FIRI as mentioned in this paper is an observatory-class mission concept: three cold, 3.5m apertures, orbiting a beam-combining module, with separations of up to 1 km, free-flying or tethered, operating between 25 and 385 μm, using the interferometric direct-detection technique to ensure μJy sensitivity and 0.02
Abstract: Half of the energy ever emitted by stars and accreting objects comes to us in the far-infrared (FIR) waveband and has yet to be properly explored. We propose a powerful Far-InfraRed Interferometer mission, FIRI, to carry out high-resolution imaging spectroscopy in the FIR. This key observational capability is essential to reveal how gas and dust evolve into stars and planets, how the first luminous objects in the Universe ignited, how galaxies formed, and when super-massive black holes grew. FIRI will disentangle the cosmic histories of star formation and accretion onto black holes and will trace the assembly and evolution of quiescent galaxies like our Milky Way. Perhaps most importantly, FIRI will observe all stages of planetary system formation and recognise the birth of planets via its ability to image the dust structures in planetary systems. FIRI is an observatory-class mission concept: three cold, 3.5-m apertures, orbiting a beam-combining module, with separations of up to 1 km, free-flying or tethered, operating between 25 and 385 μm, using the interferometric direct-detection technique to ensure μJy sensitivity and 0.02” resolution at 100 μm, across an arcmin2 instantaneous field of view, with a spectral resolution, R ~ 5,000 and a heterodyne system with R ~ 1 million. Although FIRI is an ambitious mission, we note that FIR interferometry is appreciably less demanding than at shorter wavelengths.

80 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed a mission called Darwin, whose primary goal is the study of terrestrial extrasolar planets and the search for life on them, and described different characteristics of the instrument.
Abstract: As a response to ESA call for mission concepts for its Cosmic Vision 2015–2025 plan, we propose a mission called Darwin. Its primary goal is the study of terrestrial extrasolar planets and the search for life on them. In this paper, we describe different characteristics of the instrument.

79 citations


Journal ArticleDOI
TL;DR: In this article, a Russian-led 12 m diameter sub-millimeter and far-infrared space observatory is proposed for launch around 2017, which will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory.
Abstract: Millimetron is a Russian-led 12 m diameter submillimeter and far-infrared space observatory which is included in the Space Plan of the Russian Federation for launch around 2017. With its large collecting area and state-of-the-art receivers, it will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory. Millimetron will be operated in two basic observing modes: as a single-dish observatory, and as an element of a ground-space very long baseline interferometry (VLBI) system. As single-dish, angular resolutions on the order of 3 to 12 arc sec will be achieved and spectral resolutions of up to a million employing heterodyne techniques. As VLBI antenna, the chosen elliptical orbit will provide extremely large VLBI baselines (beyond 300,000 km) resulting in micro-arc second angular resolution.

70 citations


Journal ArticleDOI
Andrea Cimatti1, Massimo Robberto2, Carlton M. Baugh3, Steven V. W. Beckwith2, Emanuele Daddi, G. De Lucia, B. Garilli4, Luigi Guzzo4, G. Kauffmann, M. D. Lehnert, D. Maccagni4, Alejo Martinez-Sansigre5, Fabio Pasian4, I. N. Reid2, Piero Rosati, Ruben Salvaterra6, Massimo Stiavelli2, Y. Wang7, M. R. Zapatero Osorio8, Marc Balcells8, Marco Bersanelli6, Frank Bertoldi9, J. Blaizot, D. Bottini4, Richard G. Bower3, Andrea Bulgarelli4, Adam J. Burgasser10, Carlo Burigana4, R. C. Butler4, Stefano Casertano2, B. Ciardi, Michele Cirasuolo, M. Clampin11, Shaun Cole3, Andrea Comastri4, Stefano Cristiani4, J. G. Cuby, F. Cuttaia4, A. de Rosa4, A. Diaz Sanchez, M. di Capua, James Dunlop, Xiaohui Fan12, Andrea Ferrara13, Fabio Finelli4, Alberto Franceschini14, M. Franx15, P. Franzetti4, Carlos S. Frenk3, Jonathan P. Gardner11, Fulvio Gianotti4, Robert Grange, Carlotta Gruppioni4, Alessandro Gruppuso4, F. Hammer, Lynne A. Hillenbrand16, A. S. Jacobsen, Matt J. Jarvis17, Robert C. Kennicutt, Randy A. Kimble11, Mariska Kriek15, Jaron Kurk5, Jean-Paul Kneib, O. Le Fevre, D. Macchetto, John W. MacKenty2, Piero Madau18, M. Magliocchetti4, Davide Maino6, Nazzareno Mandolesi4, N. Masetti4, Ross J. McLure, A. Mennella6, Michael R. Meyer19, M. Mignoli4, Bahram Mobasher20, Emilio Molinari4, Gianluca Morgante4, Simon L. Morris3, Luciano Nicastro4, Ernesto Oliva4, Paolo Padovani, Eliana Palazzi4, Francesco Paresce4, A. Pérez Garrido, Elena Pian4, L. Popa21, Marc Postman2, Lucia Pozzetti4, John Rayner, Rafael Rebolo8, Alvio Renzini4, H. J. A. Röttgering15, Eva Schinnerer5, Marco Scodeggio4, M. Saisse, Tom Shanks3, Alice E. Shapley22, Ray M. Sharples3, Herbert Shea23, Joseph Silk24, Ian Smail3, Paolo Spanò4, Juergen Steinacker5, Luca Stringhetti4, Alexander S. Szalay25, L. Tresse, M. Trifoglio4, Meg Urry26, Luca Valenziano4, F. Villa4, I. Villo Perez, Fabian Walter5, Martin Ward3, R. L. White2, Sharon A. White, Edward L. Wright27, R. F. G. Wyse25, G. Zamorani4, Andrea Zacchei4, Werner W. Zeilinger28, Filippo Maria Zerbi4 
TL;DR: The first call of the ESA Cosmic-Vision 2015-2025 planning cycle as discussed by the authors describes the scientific motivations, the mission concept and the instrumentation of Space, a class-M mission proposed for concept study.
Abstract: We describe the scientific motivations, the mission concept and the instrumentation of SPACE, a class-M mission proposed for concept study at the first call of the ESA Cosmic-Vision 2015–2025 planning cycle. SPACE aims to produce the largest three-dimensional evolutionary map of the Universe over the past 10 billion years by taking near-IR spectra and measuring redshifts for more than half a billion galaxies at 0 < z < 2 down to AB~23 over 3π sr of the sky. In addition, SPACE will also target a smaller sky field, performing a deep spectroscopic survey of millions of galaxies to AB~26 and at 2 < z < 10 +. These goals are unreachable with ground-based observations due to the ≈500 times higher sky background (see e.g. Aldering, LBNL report number LBNL-51157, 2001). To achieve the main science objectives, SPACE will use a 1.5 m diameter Ritchey-Chretien telescope equipped with a set of arrays of Digital Micro-mirror Devices covering a total field of view of 0.4 deg2, and will perform large-multiplexing multi-object spectroscopy (e.g. ≈6000 targets per pointing) at a spectral resolution of R~400 as well as diffraction-limited imaging with continuous coverage from 0.8 to 1.8 μm. Owing to the depth, redshift range, volume coverage and quality of its spectra, SPACE will reveal with unique sensitivity most of the fundamental cosmological signatures, including the power spectrum of density fluctuations and its turnover. SPACE will also place high accuracy constraints on the dark energy equation of state parameter and its evolution by measuring the baryonic acoustic oscillations imprinted when matter and radiation decoupled, the distance-luminosity relation of cosmological supernovae, the evolution of the cosmic expansion rate, the growth rate of cosmic large-scale structure, and high-z galaxy clusters. The datasets from the SPACE mission will represent a long lasting legacy for the whole astronomical community whose data will be mined for many years to come.

68 citations


Journal ArticleDOI
TL;DR: The Solar System Odyssey mission as discussed by the authors uses modern-day high-precision experimental techniques to test the laws of fundamental physics which determine dynamics in the solar system, which could lead to major discoveries by using demonstrated technologies and could be flown within the Cosmic Vision time frame.
Abstract: The Solar System Odyssey mission uses modern-day high-precision experimental techniques to test the laws of fundamental physics which determine dynamics in the solar system. It could lead to major discoveries by using demonstrated technologies and could be flown within the Cosmic Vision time frame. The mission proposes to perform a set of precision gravitation experiments from the vicinity of Earth to the outer Solar System. Its scientific objectives can be summarized as follows: (1) test of the gravity force law in the Solar System up to and beyond the orbit of Saturn; (2) precise investigation of navigation anomalies at the fly-bys; (3) measurement of Eddington’s parameter at occultations; (4) mapping of gravity field in the outer solar system and study of the Kuiper belt. To this aim, the Odyssey mission is built up on a main spacecraft, designed to fly up to 13 AU, with the following components: (a) a high-precision accelerometer, with bias-rejection system, measuring the deviation of the trajectory from the geodesics, that is also giving gravitational forces; (b) Ka-band transponders, as for Cassini, for a precise range and Doppler measurement up to 13 AU, with additional VLBI equipment; (c) optional laser equipment, which would allow one to improve the range and Doppler measurement, resulting in particular in an improved measurement (with respect to Cassini) of the Eddington’s parameter. In this baseline concept, the main spacecraft is designed to operate beyond the Saturn orbit, up to 13 AU. It experiences multiple planetary fly-bys at Earth, Mars or Venus, and Jupiter. The cruise and fly-by phases allow the mission to achieve its baseline scientific objectives [(1) to (3) in the above list]. In addition to this baseline concept, the Odyssey mission proposes the release of the Enigma radio-beacon at Saturn, allowing one to extend the deep space gravity test up to at least 50 AU, while achieving the scientific objective of a mapping of gravity field in the outer Solar System [(4) in the above list].

64 citations


Journal ArticleDOI
TL;DR: B-Pol as discussed by the authors is a medium-class space mission aimed at detecting the primordial gravitational waves generated during inflation through high accuracy measurements of the Cosmic Microwave Background polarization.
Abstract: B-Pol is a medium-class space mission aimed at detecting the primordial gravitational waves generated during inflation through high accuracy measurements of the Cosmic Microwave Background polarization. We discuss the scientific background, feasibility of the experiment, and implementation developed in response to the ESA Cosmic Vision 2015-2025 Call for Proposals.

Journal ArticleDOI
TL;DR: The gamma-ray imager (GRI) as mentioned in this paper is a novel mission concept that will provide an unprecedented sensitivity leap in the soft gamma ray domain by using for the first time a focusing lens built of Laue diffracting crystals.
Abstract: The gamma-ray imager (GRI) is a novel mission concept that will provide an unprecedented sensitivity leap in the soft gamma-ray domain by using for the first time a focusing lens built of Laue diffracting crystals. The lens will cover an energy band from 200–1,300 keV with an effective area reaching 600 cm2. It will be complemented by a single reflection multilayer coated mirror, extending the GRI energy band into the hard X-ray regime, down to ∼10 keV. The concentrated photons will be collected by a position sensitive pixelised CZT stack detector. We estimate continuum sensitivities of better than 10 − 7 ph cm − 2s − 1keV − 1 for a 100 ks exposure; the narrow line sensitivity will be better than 3 × 10 − 6 ph cm − 2s − 1 for the same integration time. As focusing instrument, GRI will have an angular resolution of better than 30 arcsec within a field of view of roughly 5 arcmin—an unprecedented achievement in the gamma-ray domain. Owing to the large focal length of 100 m of the lens and the mirror, the optics and detector will be placed on two separate spacecrafts flying in formation in a high elliptical orbit. R&D work to enable the lens focusing technology and to develop the required focal plane detector is currently underway, financed by ASI, CNES, ESA, and the Spanish Ministery of Education and Science. The GRI mission has been proposed as class M mission for ESAs Cosmic Vision 2015–2025 program. GRI will allow studies of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the universe.

Journal ArticleDOI
TL;DR: In this article, a new generation gamma-ray observatory capable of unpacking the early universe using the GRIPS mission has been proposed, which is the primary scientific goal of the mission.
Abstract: The primary scientific goal of the GRIPS mission is to revolutionize our understanding of the early universe using gamma-ray bursts. We propose a new generation gamma-ray observatory capable of unp ...

Journal ArticleDOI
TL;DR: ESA’s Cosmic Vision programme offers an ideal and timely framework to address three key questions at the scale of the Jupiter system: to what extent is its possible habitability related to the initial conditions and formation scenario of the Jovian satellites?
Abstract: The exploration of the Jovian System and its fascinating satellite Europa is one of the priorities presented in ESA’s “Cosmic Vision” strategic document. The Jovian System indeed displays many facets. It is a small planetary system in its own right, built-up out of the mixture of gas and icy material that was present in the external region of the solar nebula. Through a complex history of accretion, internal differentiation and dynamic interaction, a very unique satellite system formed, in which three of the four Galilean satellites are locked in the so-called Laplace resonance. The energy and angular momentum they exchange among themselves and with Jupiter contribute to various degrees to the internal heating sources of the satellites. Unique among these satellites, Europa is believed to shelter an ocean between its geodynamically active icy crust and its silicate mantle, one where the main conditions for habitability may be fulfilled. For this very reason, Europa is one of the best candidates for the search for life in our Solar System. So, is Europa really habitable, representing a “habitable zone” in the Jupiter system? To answer this specific question, we need a dedicated mission to Europa. But to understand in a more generic way the habitability conditions around giant planets, we need to go beyond Europa itself and address two more general questions at the scale of the Jupiter system: to what extent is its possible habitability related to the initial conditions and formation scenario of the Jovian satellites? To what extent is it due to the way the Jupiter system works? ESA’s Cosmic Vision programme offers an ideal and timely framework to address these three key questions. Building on the in-depth reconnaissance of the Jupiter System by Galileo (and the Voyager, Ulysses, Cassini and New Horizons fly-by’s) and on the anticipated accomplishments of NASA’s JUNO mission, it is now time to design and fly a new mission which will focus on these three major questions. LAPLACE, as we propose to call it, will deploy in the Jovian system a triad of orbiting platforms to perform coordinated observations of its main components: Europa, our priority target, the Jovian satellites, Jupiter’s magnetosphere and its atmosphere and interior. LAPLACE will consolidate Europe’s role and visibility in the exploration of the Solar System and will foster the development of technologies for the exploration of deep space in Europe. Its multi-platform and multi-target architecture, combined with its broadly multidisciplinary scientific dimension, will provide an outstanding opportunity to build a broad international collaboration with all interested nations and space agencies.

Journal ArticleDOI
TL;DR: ASTROD I as discussed by the authors is a planned interplanetary space mission with multiple goals, including test general relativity with an improvement in sensitivity of over three orders of magnitude, improving our understanding of gravity and aiding the development of a new quantum gravity theory.
Abstract: ASTROD I is a planned interplanetary space mission with multiple goals. The primary aims are: to test general relativity with an improvement in sensitivity of over three orders of magnitude, improving our understanding of gravity and aiding the development of a new quantum gravity theory; to measure key solar system parameters with increased accuracy, advancing solar physics and our knowledge of the solar system; and to measure the time rate of change of the gravitational constant with an order of magnitude improvement and the anomalous Pioneer acceleration, thereby probing dark matter and dark energy gravitationally. It is an international project, with major contributions from Europe and China and is envisaged as the first in a series of ASTROD missions. ASTROD I will consist of one spacecraft carrying a telescope, four lasers, two event timers and a clock. Two-way, two-wavelength laser pulse ranging will be used between the spacecraft in a solar orbit and deep space laser stations on Earth, to achieve the ASTROD I goals. A second mission, ASTROD (ASTROD II) is envisaged as a three-spacecraft mission which would test General Relativity to 1 ppb, enable detection of solar g-modes, measure the solar Lense–Thirring effect to 10 ppm, and probe gravitational waves at frequencies below the LISA bandwidth. In the third phase (ASTROD III or Super-ASTROD), larger orbits could be implemented to map the outer solar system and to probe primordial gravitational-waves at frequencies below the ASTROD II bandwidth.

Journal ArticleDOI
TL;DR: This Euro-Asian mission will go to a primitive Near-Earth Object (NEO), which it is anticipated will contain primitive materials without any known meteorite analogue, scientifically characterize it at multiple scales, and bring samples back to Earth for detailed scientific investigation.
Abstract: MARCO POLO is a joint European–Japanese sample return mission to a Near-Earth Object. This Euro-Asian mission will go to a primitive Near-Earth Object (NEO), which we anticipate will contain primitive materials without any known meteorite analogue, scientifically characterize it at multiple scales, and bring samples back to Earth for detailed scientific investigation. Small bodies, as primitive leftover building blocks of the Solar System formation process, offer important clues to the chemical mixture from which the planets formed some 4.6 billion years ago. Current exobiological scenarios for the origin of Life invoke an exogenous delivery of organic matter to the early Earth: it has been proposed that primitive bodies could have brought these complex organic molecules capable of triggering the pre-biotic synthesis of biochemical compounds. Moreover, collisions of NEOs with the Earth pose a finite hazard to life. For all these reasons, the exploration of such objects is particularly interesting and urgent. The scientific objectives of MARCO POLO will therefore contribute to a better understanding of the origin and evolution of the Solar System, the Earth, and possibly Life itself. Moreover, MARCO POLO provides important information on the volatile-rich (e.g. water) nature of primitive NEOs, which may be particularly important for future space resource utilization as well as providing critical information for the security of Earth. MARCO POLO is a proposal offering several options, leading to great flexibility in the actual implementation. The baseline mission scenario is based on a launch with a Soyuz-type launcher and consists of a Mother Spacecraft (MSC) carrying a possible Lander named SIFNOS, small hoppers, sampling devices, a re-entry capsule and scientific payloads. The MSC leaves Earth orbit, cruises toward the target with ion engines, rendezvous with the target, conducts a global characterization of the target to select a sampling site, and delivers small hoppers (MINERVA type, JAXA) and SIFNOS. The latter, if added, will perform a soft landing, anchor to the target surface, and make various in situ measurements of surface/subsurface materials near the sampling site. Two surface samples will be collected by the MSC using “touch and go” manoeuvres. Two complementary sample collection devices will be used in this phase: one developed by ESA and another provided by JAXA, mounted on a retractable extension arm. After the completion of the sampling and ascent of the MSC, the arm will be retracted to transfer the sample containers into the MSC. The MSC will then make its journey back to Earth and release the re-entry capsule into the Earth’s atmosphere.

Journal ArticleDOI
TL;DR: In this paper, the physical principles of the atmospheric Cherenkov technique are discussed, emphasizing its rapid development during the last decade, and the present status is illustrated by two examples: the spectral and morphological characterization in VHE γ-rays of a shell-type supernova remnant together with its theoretical interpretation, and a survey of the Galactic Plane that shows a large variety of non-thermal sources.
Abstract: The technique of γ-ray astronomy at very high energies (VHE:> 100 GeV) with ground-based imaging atmospheric Cherenkov telescopes is described, the H.E.S.S. array in Namibia serving as example. Mainly a discussion of the physical principles of the atmospheric Cherenkov technique is given, emphasizing its rapid development during the last decade. The present status is illustrated by two examples: the spectral and morphological characterization in VHE γ-rays of a shell-type supernova remnant together with its theoretical interpretation, and the results of a survey of the Galactic Plane that shows a large variety of non-thermal sources. The final part is devoted to an overview of the ongoing and future instrumental developments.

Journal ArticleDOI
TL;DR: The PLAnetary Transits and Oscillations of stars Mission (PLATO) as mentioned in this paper is the next-generation planet finder, which will detect and characterize exoplanets by means of their transit signature in front of a very large sample of bright stars, and measure the seismic oscillations of the parent stars orbited by these planets to understand the properties of the exoplanetary systems.
Abstract: The PLAnetary Transits and Oscillations of stars Mission (PLATO), presented to ESA in the framework of its “Cosmic Vision” programme, will detect and characterize exoplanets by means of their transit signature in front of a very large sample of bright stars, and measure the seismic oscillations of the parent stars orbited by these planets in order to understand the properties of the exoplanetary systems. PLATO is the next-generation planet finder, building on the accomplishments of CoRoT and Kepler: i) it will observe significantly more stars, ii) its targets will be 2 to 3 magnitudes brighter (hence the precision of the measurements will be correspondingly greater as will be those of post-detection investigations, e.g. spectroscopy, asteroseismology, and eventually imaging), iii) it will be capable of observing significantly smaller exoplanets. The space-based observations will be complemented by ground- and space-based follow-up observations. These goals will be achieved by a long-term (4 years), high-precision, high-time-resolution, high-duty-cycle monitoring in visible photometry of a sample of more than 100,000 relatively bright (m V ≤ 12) stars and another 400,000 down to m V = 14. Two different mission concepts are proposed for PLATO: i) a “staring” concept with 100 small, very wide-field telescopes, assembled on a single platform and all looking at the same 26° diameter field, and ii) a “spinning” concept with three moderate-size telescopes covering more than 1400 degree2.

Journal ArticleDOI
TL;DR: In this paper, a M-class satellite mission is proposed to test the equivalence principle in the quantum domain by investigating the extended free fall of matter waves instead of macroscopic bodies as in the case of GAUGE or STEP.
Abstract: In response to ESA's Call for proposals of 5 March 2007 of the COSMIC VISION 2015-2025 plan of the ESA science programme, we propose a M-class satellite mission to test of the Equivalence Principle in the quantum domain by investigating the extended free fall of matter waves instead of macroscopic bodies as in the case of GAUGE, MICROSCOPE or STEP. The satellite, called Matter Wave Explorer of Gravity, will carry an experiment to test gravity, namely the measurement of the equal rate of free fall with various isotopes of distinct atomic species with precision cold atom interferometry in the vicinity of the earth. This will allow for a first quantum test the Equivalence Principle with spin polarised particles and with pure fermionic and bosonic atomic ensembles. Due to the space conditions, the free fall of Rubidium and Potassium isotopes will be compared with a maximum accelerational sensitivity of 5*10 − 16 m/s2 corresponding to an accuracy of the test of the Equivalence Principle of 1 part in 1016. Besides the primary scientific goal, the quantum test of the Equivalence Principle, the mission can be extended to provide additional information about the gravitational field of the earth or for testing theories of fundamental processes of decoherence which are investigated by various theory groups in the context of quantum gravity phenomenology. In this proposal we present in detail the mission objectives and the technical aspects of the proposed mission.

Journal ArticleDOI
TL;DR: The Dark UNiverse Explorer (DUNE) is a wide-field space imager whose primary goal is the study of dark energy and dark matter with unprecedented precision as discussed by the authors, which is optimized for the measurement of weak gravitational lensing but will also provide complementary measurements of baryonic accoustic oscillations, cluster counts and the Integrated Sachs Wolfe effect.
Abstract: The Dark UNiverse Explorer (DUNE) is a wide-field space imager whose primary goal is the study of dark energy and dark matter with unprecedented precision. For this purpose, DUNE is optimised for the measurement of weak gravitational lensing but will also provide complementary measurements of baryonic accoustic oscillations, cluster counts and the Integrated Sachs Wolfe effect. Immediate auxiliary goals concern the evolution of galaxies, to be studied with unequalled statistical power, the detailed structure of the Milky Way and nearby galaxies, and the demographics of Earth-mass planets. DUNE is an Medium-class mission which makes use of readily available components, heritage from other missions, and synergy with ground based facilities to minimise cost and risks. The payload consists of a 1.2 m telescope with a combined visible/NIR field-of-view of 1 deg2. DUNE will carry out an all-sky survey, ranging from 550 to 1600 nm, in one visible and three NIR bands which will form a unique legacy for astronomy. DUNE will yield major advances in a broad range of fields in astrophysics including fundamental cosmology, galaxy evolution, and extrasolar planet search. DUNE was recently selected by ESA as one of the mission concepts to be studied in its Cosmic Vision programme.

Journal ArticleDOI
TL;DR: The Laser Astrometric Test of Relativity (LATOR) as mentioned in this paper was designed to test the metric nature of gravitation, a fundamental postulate of the Einstein's general theory of relativity.
Abstract: The Laser Astrometric Test of Relativity (LATOR) is an experiment designed to test the metric nature of gravitation—a fundamental postulate of the Einstein’s general theory of relativity. The key element of LATOR is a geometric redundancy provided by the long-baseline optical interferometry and interplanetary laser ranging. By using a combination of independent time-series of gravitational deflection of light in the immediate proximity to the Sun, along with measurements of the Shapiro time delay on interplanetary scales (to a precision respectively better than 0.1 picoradians and 1 cm), LATOR will significantly improve our knowledge of relativistic gravity and cosmology. The primary mission objective is i) to measure the key post-Newtonian Eddington parameter γ with accuracy of a part in 109. $\frac{1}{2}(1-\gamma)$ is a direct measure for presence of a new interaction in gravitational theory, and, in its search, LATOR goes a factor 30,000 beyond the present best result, Cassini’s 2003 test. Other mission objectives include: ii) first measurement of gravity’s non-linear effects on light to ∼0.01% accuracy; including both the traditional Eddington β parameter and also the spatial metric’s 2nd order potential contribution (never measured before); iii) direct measurement of the solar quadrupole moment J 2 (currently unavailable) to accuracy of a part in 200 of its expected size of ≃ 10 − 7; iv) direct measurement of the “frame-dragging” effect on light due to the Sun’s rotational gravitomagnetic field, to 0.1% accuracy. LATOR’s primary measurement pushes to unprecedented accuracy the search for cosmologically relevant scalar-tensor theories of gravity by looking for a remnant scalar field in today’s solar system. We discuss the science objectives of the mission, its technology, mission and optical designs, as well as expected performance of this experiment. LATOR will lead to very robust advances in the tests of fundamental physics: this mission could discover a violation or extension of general relativity and/or reveal the presence of an additional long range interaction in the physical law. There are no analogs to LATOR; it is unique and is a natural culmination of solar system gravity experiments.

Journal ArticleDOI
TL;DR: The Fresnel Interferometric Imager has been proposed to the European Space Agency (ESA) Cosmic Vision plan as a class L mission as mentioned in this paper, which is an ultra-lightweight telescope, featuring a novel optical concept based on diffraction focussing.
Abstract: The Fresnel Interferometric Imager has been proposed to the European Space Agency (ESA) Cosmic Vision plan as a class L mission. This mission addresses several themes of the CV Plan: Exoplanet study, Matter in extreme conditions, and The Universe taking shape. This paper is an abridged version of the original ESA proposal. We have removed most of the technical and financial issues, to concentrate on the instrumental design and astrophysical missions. The instrument proposed is an ultra-lightweight telescope, featuring a novel optical concept based on diffraction focussing. It yields high dynamic range images, while releasing constraints on positioning and manufacturing of the main optical elements. This concept should open the way to very large apertures in space. In this two spacecraft formation-flying instrument, one spacecraft holds the focussing element: the Fresnel interferometric array; the other spacecraft holds the field optics, focal instrumentation, and detectors. The Fresnel array proposed here is a 3.6 ×3.6 m square opaque foil punched with 105 to 106 void “subapertures”. Focusing is achieved with no other optical element: the shape and positioning of the subapertures (holes in the foil) is responsible for beam combining by diffraction, and 5% to 10% of the total incident light ends up into a sharp focus. The consequence of this high number of subapertures is high dynamic range images. In addition, as it uses only a combination of vacuum and opaque material, this focussing method is potentially efficient over a very broad wavelength domain. The focal length of such diffractive focussing devices is wavelength dependent. However, this can be corrected. We have tested optically the efficiency of the chromatism correction on artificial sources (500 < λ < 750 nm): the images are diffraction limited, and the dynamic range measured on an artificial double source reaches 6.2 10 − 6. We have also validated numerical simulation algorithms for larger Fresnel interferometric arrays. These simulations yield a dynamic range (rejection factor) close to 10 − 8 for arrays such as the 3.6 m one we propose. A dynamic range of 10 − 8 allows detection of objects at contrasts as high as than 10 − 9 in most of the field. The astrophysical applications cover many objects in the IR, visible an UV domains. Examples are presented, taking advantage of the high angular resolution and dynamic range capabilities of this concept.

Journal ArticleDOI
TL;DR: The Super Earth Explorer (SEE-COAST) is an Off-Axis Space Telescope designed for high contrast imaging of exoplanets as discussed by the authors, which can make the physico-chemical characterization of ex-planets possibly down to 2 Earth radii.
Abstract: The Super-Earth Explorer is an Off-Axis Space Telescope (SEE-COAST) designed for high contrast imaging. Its scientific objective is to make the physico-chemical characterization of exoplanets possibly down to 2 Earth radii. For that purpose it will analyze the spectral and polarimetric properties of the parent starlight reflected by the planets, in the wavelength range 400–1,250 nm.

Journal ArticleDOI
TL;DR: The POLAR Investigation of the Sun (POLARIS) mission as mentioned in this paper uses a combination of a gravity assist and solar sail propulsion to place a spacecraft in a 0.48 AU circular orbit around the Sun with an inclination of 75° with respect to solar equator.
Abstract: The POLAR Investigation of the Sun (POLARIS) mission uses a combination of a gravity assist and solar sail propulsion to place a spacecraft in a 0.48 AU circular orbit around the Sun with an inclination of 75° with respect to solar equator. This challenging orbit is made possible by the challenging development of solar sail propulsion. This first extended view of the high-latitude regions of the Sun will enable crucial observations not possible from the ecliptic viewpoint or from Solar Orbiter. While Solar Orbiter would give the first glimpse of the high latitude magnetic field and flows to probe the solar dynamo, it does not have sufficient viewing of the polar regions to achieve POLARIS’s primary objective: determining the relation between the magnetism and dynamics of the Sun’s polar regions and the solar cycle.

Journal ArticleDOI
TL;DR: The first attempts to measure the infrared outputs of stars preceded by nearly a century the permanent establishment of infrared astronomy as an important aspect of the field as mentioned in this paper, and the most important advances were the success of radio astronomy in demonstrating interesting phenomena outside of the optical regime.
Abstract: The first attempts to measure the infrared outputs of stars preceded by nearly a century the permanent establishment of infrared astronomy as an important aspect of the field. There were a number of false starts in that century, significant efforts that had little impact on the astronomical community at large. Why did these efforts fizzle out? What was different in the start that did not fizzle, in the 1960s? I suggest that the most important advances were the success of radio astronomy in demonstrating interesting phenomena outside of the optical regime, and the establishment virtually simultaneously in the United States of a number of research groups that could support each other and compete against one another in their approach to infrared astronomy.

Journal ArticleDOI
TL;DR: PEGASE as discussed by the authors is a mission dedicated to the exploration of the environment (including habitable zone) of young and solar-type stars (particularly those in the DARWIN catalogue) and the observation of low mass companions around nearby stars.
Abstract: PEGASE is a mission dedicated to the exploration of the environment (including habitable zone) of young and solar-type stars (particularly those in the DARWIN catalogue) and the observation of low mass companions around nearby stars. It is a space interferometer project composed of three free flying spacecraft, respectively featuring two 40 cm siderostats and a beam combiner working in the visible and near infrared. It has been proposed to ESA as an answer to the first “Cosmic Vision” call for proposals, as an M mission. The concept also enables full-scale demonstration of space nulling interferometry operation for DARWIN.

Journal ArticleDOI
TL;DR: Galileo Galilei (GG) is a small satellite designed to fly in low Earth orbit with the goal of testing the Equivalence Principle to 1 part in 1017 as mentioned in this paper.
Abstract: “Galileo Galilei” (GG) is a small satellite designed to fly in low Earth orbit with the goal of testing the Equivalence Principle—which is at the basis of the General Theory of Relativity—to 1 part in 1017. If successful, it would improve current laboratory results by 4 orders of magnitude. A confirmation would strongly constrain theories; proof of violation is believed to lead to a scientific revolution. The experiment design allows it to be carried out at ambient temperature inside a small 1-axis stabilized satellite (250 kg total mass). GG is under investigation at Phase A-2 level by ASI (Agenzia Spaziale Italiana) at Thales Alenia Space in Torino, while a laboratory prototype (known as GGG) is operational at INFN laboratories in Pisa, supported by INFN (Istituto Nazionale di fisica Nucleare) and ASI. A final study report will be published in 2009.

Journal ArticleDOI
TL;DR: For more than 45 years the building of X-ray telescopes for solar and astronomical observations has been practised with significant performance improvement as mentioned in this paper, and various techniques applied are reviewed emphazising the impact of proper mirror material choice, grinding and polishing improvements and the role of metrology.
Abstract: For more than 45 years the building of X-ray telescopes for solar and astronomical observations has been practised with significant performance improvement. The various techniques applied are reviewed emphazising the impact of proper mirror material choice, grinding and polishing improvements and the role of metrology.

Journal ArticleDOI
TL;DR: The recent plethora of lunar missions (flown or proposed) reflects a resurgence in interest in the Moon, not only in its own right, but also as a record of the early solar system including the formation of the Earth.
Abstract: While the surface missions to the Moon of the 1970s achieved a great deal, scientifically much was also left unresolved. The recent plethora of lunar missions (flown or proposed) reflects a resurgence in interest in the Moon, not only in its own right, but also as a record of the early solar system including the formation of the Earth. Results from recent orbiter missions have shown evidence of ice or at least hydrogen within shadowed craters at the lunar poles.

Journal ArticleDOI
TL;DR: Luciola is a large (1.km) "multi-aperture densified-pupil imaging interferometer" as discussed by the authors employing many small apertures, rather than a few large ones, for obtaining direct snapshot images with a high information content.
Abstract: Luciola is a large (1 km) “multi-aperture densified-pupil imaging interferometer”, or “hypertelescope” employing many small apertures, rather than a few large ones, for obtaining direct snapshot images with a high information content. A diluted collector mirror, deployed in space as a flotilla of small mirrors, focuses a sky image which is exploited by several beam-combiner spaceships. Each contains a “pupil densifier” micro-lens array to avoid the diffractive spread and image attenuation caused by the small sub-apertures. The elucidation of hypertelescope imaging properties during the last decade has shown that many small apertures tend to be far more efficient, regarding the science yield, than a few large ones providing a comparable collecting area. For similar underlying physical reasons, radio-astronomy has also evolved in the direction of many-antenna systems such as the proposed Low Frequency Array having “hundreds of thousands of individual receivers”. With its high limiting magnitude, reaching the m v = 30 limit of HST when 100 collectors of 25 cm will match its collecting area, high-resolution direct imaging in multiple channels, broad spectral coverage from the 1,200 A ultra-violet to the 20 μm infra-red, apodization, coronagraphic and spectroscopic capabilities, the proposed hypertelescope observatory addresses very broad and innovative science covering different areas of ESA’s Cosmic Vision program. In the initial phase, a focal spacecraft covering the UV to near IR spectral range of EMCCD photon-counting cameras (currently 200 to 1,000 nm), will image details on the surface of many stars, as well as their environment, including multiple stars and clusters. Spectra will be obtained for each resel. It will also image neutron star, black-hole and micro-quasar candidates, as well as active galactic nuclei, quasars, gravitational lenses, and other Cosmic Vision targets observable with the initial modest crowding limit. With subsequent upgrade missions, the spectral coverage can be extended from 120 nm to 20 μm, using four detectors carried by two to four focal spacecraft. The number of collector mirrors in the flotilla can also be increased from 12 to 100 and possibly 1,000. The imaging and spectroscopy of habitable exoplanets in the mid infra-red then becomes feasible once the collecting area reaches 6 m2, using a specialized mid infra-red focal spacecraft. Calculations (Boccaletti et al., Icarus 145, 628–636, 2000) have shown that hypertelescope coronagraphy has unequalled sensitivity for detecting, at mid infra-red wavelengths, faint exoplanets within the exo-zodiacal glare. Later upgrades will enable the more difficult imaging and spectroscopy of these faint objects at visible wavelengths, using refined techniques of adaptive coronagraphy (Labeyrie and Le Coroller 2004). Together, the infra-red and visible spectral data carry rich information on the possible presence of life. The close environment of the central black-hole in the Milky Way will be imageable with unprecedented detail in the near infra-red. Cosmological imaging of remote galaxies at the limit of the known universe is also expected, from the ultra-violet to the near infra-red, following the first upgrade, and with greatly increasing sensitivity through successive upgrades. These areas will indeed greatly benefit from the upgrades, in terms of dynamic range, limiting complexity of the objects to be imaged, size of the elementary “Direct Imaging Field”, and limiting magnitude, approaching that of an 8-m space telescope when 1,000 apertures of 25 cm are installed. Similar gains will occur for addressing fundamental problems in physics and cosmology, particularly when observing neutron stars and black holes, single or binary, including the giant black holes, with accretion disks and jets, in active galactic nuclei beyond the Milky Way. Gravitational lensing and micro-lensing patterns, including time-variable patterns and perhaps millisecond lensing flashes which may be beamed by diffraction from sub-stellar masses at sub-parsec distances (Labeyrie, Astron Astrophys 284, 689, 1994), will also be observable initially in the favourable cases, and upgrades will greatly improve the number of observable objects. The observability of gravitational waves emitted by binary lensing masses, in the form of modulated lensing patterns, is a debated issue (Ragazzoni et al., MNRAS 345, 100–110, 2003) but will also become addressable observationally. The technology readiness of Luciola approaches levels where low-orbit testing and stepwise implementation will become feasible in the 2015–2025 time frame. For the following decades beyond 2020, once accurate formation flying techniques will be mastered, much larger hypertelescopes such as the proposed 100 km Exo-Earth Imager and the 100,000 km Neutron Star Imager should also become feasible. Luciola is therefore also seen as a precursor toward such very powerful instruments.