scispace - formally typeset
Open AccessJournal ArticleDOI

A census of baryons in the Universe from localized fast radio bursts.

Reads0
Chats0
TLDR
In this paper, the dispersion of a sample of localized fast radio bursts was used to determine the electron column density along each line of sight and accounts for every ionized baryon.
Abstract
More than three-quarters of the baryonic content of the Universe resides in a highly diffuse state that is difficult to detect, with only a small fraction directly observed in galaxies and galaxy clusters1,2. Censuses of the nearby Universe have used absorption line spectroscopy3,4 to observe the ‘invisible’ baryons, but these measurements rely on large and uncertain corrections and are insensitive to most of the Universe’s volume and probably most of its mass. In particular, quasar spectroscopy is sensitive either to the very small amounts of hydrogen that exist in the atomic state, or to highly ionized and enriched gas4–6 in denser regions near galaxies7. Other techniques to observe these invisible baryons also have limitations; Sunyaev–Zel’dovich analyses8,9 can provide evidence from gas within filamentary structures, and studies of X-ray emission are most sensitive to gas near galaxy clusters9,10. Here we report a measurement of the baryon content of the Universe using the dispersion of a sample of localized fast radio bursts; this technique determines the electron column density along each line of sight and accounts for every ionized baryon11–13. We augment the sample of reported arcsecond-localized14–18 fast radio bursts with four new localizations in host galaxies that have measured redshifts of 0.291, 0.118, 0.378 and 0.522. This completes a sample sufficiently large to account for dispersion variations along the lines of sight and in the host-galaxy environments11, and we derive a cosmic baryon density of $${\varOmega }_{{\rm{b}}}={0.051}_{-0.025}^{+0.021}{h}_{70}^{-1}$$ (95 per cent confidence; h70 = H0/(70 km s−1 Mpc−1) and H0 is Hubble’s constant). This independent measurement is consistent with values derived from the cosmic microwave background and from Big Bang nucleosynthesis19,20. The baryon density determined along the lines of sight to localized fast radio bursts is consistent with that determined from the cosmic microwave background and required by Big Bang nucleosynthesis.

read more

Citations
More filters
Journal ArticleDOI

A fast radio burst associated with a Galactic magnetar.

TL;DR: A millisecond-duration radio burst from the Galactic magnetar SGR-1935+2154 with a fluence of 1.5 ± 0.3 megajansky milliseconds was detected by the STARE2 radio array in the 1,281-1,468 megahertz band.
Journal ArticleDOI

Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies

Elcio Abdalla, +202 more
TL;DR: In this paper , the authors focus on the 5.0σ tension between the Planck CMB estimate of the Hubble constant H0 and the SH0ES collaboration measurements and discuss the importance of trying to fit a full array of data with a single model.
Journal ArticleDOI

A fast radio burst associated with a Galactic magnetar

TL;DR: The discovery of FRB 200428 implies that active magnetars such as SGR 1935+2154 can produce FRBs at extragalactic distances, and favours emission models that describe synchrotron masers or electromagnetic pulses powered by magnetar bursts and giant flares.
References
More filters
Proceedings Article

A density-based algorithm for discovering clusters in large spatial Databases with Noise

TL;DR: DBSCAN, a new clustering algorithm relying on a density-based notion of clusters which is designed to discover clusters of arbitrary shape, is presented which requires only one input parameter and supports the user in determining an appropriate value for it.
Journal ArticleDOI

Planck 2015 results - XIII. Cosmological parameters

Peter A. R. Ade, +337 more
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Journal ArticleDOI

Planck 2015 results. XIII. Cosmological parameters

Peter A. R. Ade, +260 more
TL;DR: In this paper, the authors present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB, which are consistent with the six-parameter inflationary LCDM cosmology.
Journal ArticleDOI

The Seventh Data Release of the Sloan Digital Sky Survey

Kevork N. Abazajian, +223 more
TL;DR: A series of improvements to the spectroscopic reductions are described, including better flat fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities.
Journal ArticleDOI

The Seventh Data Release of the Sloan Digital Sky Survey

TL;DR: SDSS-II as mentioned in this paper is the last data set of the Sloan Digital Sky Survey and contains 357 million distinct objects, including 930,000 galaxies, 120,000 quasars, and 460,000 stars.
Related Papers (5)

A single fast radio burst localized to a massive galaxy at cosmological distance