scispace - formally typeset
Open AccessJournal ArticleDOI

A polymer optoelectronic interface restores light sensitivity in blind rat retinas

Reads0
Chats0
TLDR
It is demonstrated that this bio-organic interface restored light sensitivity in explants of rat retinas with light-induced photoreceptor degeneration, suggesting that all-organic devices may play an important future role in sub-retinal prosthetic implants.
Abstract
Interfacing organic electronics with biological substrates offers new possibilities for biotechnology by taking advantage of the beneficial properties exhibited by organic conducting polymers. These polymers have been used for cellular interfaces in several applications, including cellular scaffolds, neural probes, biosensors and actuators for drug release. Recently, an organic photovoltaic blend has been used for neuronal stimulation via a photo-excitation process. Here, we document the use of a single-component organic film of poly(3-hexylthiophene) (P3HT) to trigger neuronal firing upon illumination. Moreover, we demonstrate that this bio–organic interface restores light sensitivity in explants of rat retinas with lightinduced photoreceptor degeneration. These findings suggest that all-organic devices may play an important future role in subretinal prosthetic implants.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Near-Infrared Tandem Organic Photodiodes for Future Application in Artificial Retinal Implants

TL;DR: Organic photodiodes sensitive to near‐infrared (NIR) light are evaluated as photovoltaic pixels for future application in retinal prostheses and only tandem OPD pixels can cover the entire charge per pulse neural stimulation window due to their higher V OC.
Journal ArticleDOI

Semiconducting polymers are light nanotransducers in eyeless animals

TL;DR: It is shown that nanoparticles based on poly(3-hexylthiophene) can be internalized in eyeless freshwater polyps and are fully biocompatible, and suggests the establishment of a seamless and biomimetic interface between the living organism and the polymer nanoparticles that behave as light nanotransducers, coping with or amplifying the function of primitive photoreceptors.
Journal ArticleDOI

Photostimulation of Whole-Cell Conductance in Primary Rat Neocortical Astrocytes Mediated by Organic Semiconducting Thin Films

TL;DR: Biophysical and pharmacological characterization suggests that the ion channel mediating the photo‐transduction mechanism is a chloride channel, the ClC‐2 channel, which opens interesting perspectives for the selective manipulation of astrocyte bioelectrical activity by non‐invasive, label‐free, organic‐based, photostimulation approaches.
References
More filters
Journal ArticleDOI

Electrochemical Methods: Fundamentals and Applications

TL;DR: In this paper, the authors present a survey of electrochemical methods and their applications, focusing on the following categories: electrochemical water treatment methods, electrochemical method fundamentals and applications, and student solutions manual.
Journal ArticleDOI

Application of conducting polymers to biosensors.

TL;DR: In the present review an attempt has been made to describe the salient features of conducting polymers and their wide applications in health care, food industries, environmental monitoring etc.
Journal ArticleDOI

Stimulation of neurite outgrowth using an electrically conducting polymer

TL;DR: The electrically conductive polymer--oxidized polypyrrole (PP)--has been evaluated for use as a substrate to enhance nerve cell interactions in culture as a first step toward potentially using such polymers to stimulate in vivo nerve regeneration.
Journal ArticleDOI

Retinal Repair by Transplantation of Photoreceptor Precursors

TL;DR: It is shown that donor cells can integrate into the adult or degenerating retina if they are taken from the developing retina at a time coincident with the peak of rod genesis, and the ontogenetic stage of donor cells for successful rod photoreceptor transplantation is defined.
Related Papers (5)