scispace - formally typeset
Open AccessJournal ArticleDOI

Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species

Keith Bradnam, +95 more
- 23 Jan 2013 - 
TLDR
The Assemblathon 2 as mentioned in this paper presented a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and a snake) from 21 participating teams.
Abstract
Background - The process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly. Results - In Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies. Conclusions - Many current genome assemblers produced useful assemblies, containing a significant representation of their genes, regulatory sequences, and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.

read more

Citations
More filters
Journal ArticleDOI

featureCounts: an efficient general-purpose program for assigning sequence reads to genomic features

TL;DR: FeatureCounts as discussed by the authors is a read summarization program suitable for counting reads generated from either RNA or genomic DNA sequencing experiments, which implements highly efficient chromosome hashing and feature blocking techniques.
Journal ArticleDOI

Sequencing depth and coverage: key considerations in genomic analyses

TL;DR: The issue of sequencing depth in the design of next-generation sequencing experiments is discussed and current guidelines and precedents on the issue of coverage are reviewed for four major study designs, including de novo genome sequencing, genome resequencing, transcriptome sequencing and genomic location analyses.
Journal ArticleDOI

Shotgun metagenomics, from sampling to analysis

TL;DR: Computational approaches to overcome the challenges that affect both assembly-based and mapping-based metagenomic profiling, particularly of high-complexity samples or environments containing organisms with limited similarity to sequenced genomes, are needed.
Journal ArticleDOI

Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads

TL;DR: Platanus provides a novel and efficient approach for the assembly of gigabase-sized highly heterozygous genomes and is an attractive alternative to the existing assemblers designed for genomes of lower heterozygosity.
Journal ArticleDOI

Comparative genomics reveals insights into avian genome evolution and adaptation.

Guojie Zhang, +106 more
- 12 Dec 2014 - 
TL;DR: This work explored bird macroevolution using full genomes from 48 avian species representing all major extant clades to reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits.
References
More filters
Journal ArticleDOI

Basic Local Alignment Search Tool

TL;DR: A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score.
Journal ArticleDOI

The Sequence Alignment/Map format and SAMtools

TL;DR: SAMtools as discussed by the authors implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments.
Journal ArticleDOI

Fast and accurate short read alignment with Burrows–Wheeler transform

TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Journal ArticleDOI

Initial sequencing and analysis of the human genome.

Eric S. Lander, +248 more
- 15 Feb 2001 - 
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Journal ArticleDOI

Velvet: Algorithms for de novo short read assembly using de Bruijn graphs

TL;DR: Velvet represents a new approach to assembly that can leverage very short reads in combination with read pairs to produce useful assemblies and is in close agreement with simulated results without read-pair information.
Related Papers (5)