scispace - formally typeset
Open AccessJournal ArticleDOI

Gut microbiome composition is linked to whole grain-induced immunological improvements

TLDR
It is revealed that a short-term intake of whole grains induced compositional alterations of the gut microbiota that coincided with improvements in host physiological measures related to metabolic dysfunctions in humans.
Abstract
The involvement of the gut microbiota in metabolic disorders, and the ability of whole grains to affect both host metabolism and gut microbial ecology, suggest that some benefits of whole grains are mediated through their effects on the gut microbiome. Nutritional studies that assess the effect of whole grains on both the gut microbiome and human physiology are needed. We conducted a randomized cross-over trial with four-week treatments in which 28 healthy humans consumed a daily dose of 60 g of whole-grain barley (WGB), brown rice (BR), or an equal mixture of the two (BR+WGB), and characterized their impact on fecal microbial ecology and blood markers of inflammation, glucose and lipid metabolism. All treatments increased microbial diversity, the Firmicutes/Bacteroidetes ratio, and the abundance of the genus Blautia in fecal samples. The inclusion of WGB enriched the genera Roseburia, Bifidobacterium and Dialister, and the species Eubacterium rectale, Roseburia faecis and Roseburia intestinalis. Whole grains, and especially the BR+WGB treatment, reduced plasma interleukin-6 (IL-6) and peak postprandial glucose. Shifts in the abundance of Eubacterium rectale were associated with changes in the glucose and insulin postprandial response. Interestingly, subjects with greater improvements in IL-6 levels harbored significantly higher proportions of Dialister and lower abundance of Coriobacteriaceae. In conclusion, this study revealed that a short-term intake of whole grains induced compositional alterations of the gut microbiota that coincided with improvements in host physiological measures related to metabolic dysfunctions in humans.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Personalized Nutrition by Prediction of Glycemic Responses

TL;DR: A machine-learning algorithm is devised that integrates blood parameters, dietary habits, anthropometrics, physical activity, and gut microbiota measured in an 800-person cohort and shows that it accurately predicts personalized postprandial glycemic response to real-life meals, and a blinded randomized controlled dietary intervention based on this algorithm resulted in significantly lower postpr andial responses and consistent alterations to gut microbiota configuration.
Journal ArticleDOI

Influence of diet on the gut microbiome and implications for human health.

TL;DR: It is shown that consumption of particular types of food produces predictable shifts in existing host bacterial genera, which affects host immune and metabolic parameters, with broad implications for human health.
Journal ArticleDOI

Interaction between microbiota and immunity in health and disease

TL;DR: In this paper, the authors review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs.
Journal ArticleDOI

Dietary fiber and prebiotics and the gastrointestinal microbiota.

TL;DR: The current knowledge of the impact of fiber and prebiotic consumption on the composition and metabolic function of the human gastrointestinal microbiota is reviewed, including the effects of physiochemical properties of complex carbohydrates, adequate intake and treatment dosages, and the phenotypic responses related to the composition of thehuman microbiota.
Journal ArticleDOI

You are what you eat: diet, health and the gut microbiota.

TL;DR: The major principles underlying effects of dietary constituents on the gut microbiota are reviewed, resolving aspects of the diet–microbiota–host crosstalk, and the promises and challenges of incorporating microbiome data into dietary planning are presented.
References
More filters
Journal ArticleDOI

Gordonibacter pamelaeae gen. nov., sp. nov., a new member of the Coriobacteriaceae isolated from a patient with Crohn's disease, and reclassification of Eggerthella hongkongensis Lau et al. 2006 as Paraeggerthella hongkongensis gen. nov., comb. nov.

TL;DR: A strictly anaerobic, Gram-positive, short-rod/coccobacillus-shaped bacterial strain was isolated from the colon of a patient suffering from acute Crohn's disease and revealed that the isolate represents a distinct lineage within the family Coriobacteriaceae and has 94.6 % identity to the type strain of [Eggerthella] hongkongensis, the phylogenetically closest bacterial species.
Journal ArticleDOI

Metabolism: Host and microbes in a pickle

TL;DR: The gut microbiota is a major source of inflammation in adults with obesity and under certain conditions, the resident microorganisms of the gut might contribute to this inflammation, resulting in disease.
Journal ArticleDOI

Prediction of in vivo short-chain fatty acid production in hindgut fermenting mammals: problems and pitfalls.

TL;DR: This review focuses on the factors that influence the prediction of short-chain fatty acid formation in the large intestine of monogastric mammals and concludes that the choice for a method will rely on the purpose of the study taking into account the advantages and disadvantages of every method.
Related Papers (5)