scispace - formally typeset
Open AccessJournal ArticleDOI

Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes

Scott Baskerville, +1 more
- 01 Mar 2005 - 
- Vol. 11, Iss: 3, pp 241-247
TLDR
The results show that proximal pairs of miRNAs are generally coexpressed, and that in situ analyses of host gene expression can be used to probe the spatial and temporal localization of intronic mi RNAs.
Abstract
MicroRNAs (miRNAs) are short endogenous RNAs known to post-transcriptionally repress gene expression in animals and plants. A microarray profiling survey revealed the expression patterns of 175 human miRNAs across 24 different human organs. Our results show that proximal pairs of miRNAs are generally coexpressed. In addition, an abrupt transition in the correlation between pairs of expressed miRNAs occurs at a distance of 50 kb, implying that miRNAs separated by <50 kb typically derive from a common transcript. Some microRNAs are within the introns of host genes. Intronic miRNAs are usually coordinately expressed with their host gene mRNA, implying that they also generally derive from a common transcript, and that in situ analyses of host gene expression can be used to probe the spatial and temporal localization of intronic miRNAs.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal Article

Oncomirs : microRNAs with a role in cancer

TL;DR: I MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators as discussed by the authors, and have been shown to repress the expression of important cancer-related genes and might prove useful in the diagnosis and treatment of cancer.
Journal ArticleDOI

Oncomirs — microRNAs with a role in cancer

TL;DR: Evidence has shown that miRNA mutations or mis-expression correlate with various human cancers and indicates that miRNAs can function as tumour suppressors and oncogenes.
Journal ArticleDOI

A mammalian microRNA expression atlas based on small RNA library sequencing.

TL;DR: A relatively small set of miRNAs, many of which are ubiquitously expressed, account for most of the differences in miRNA profiles between cell lineages and tissues.
Journal ArticleDOI

The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1.

TL;DR: It is found that all five members of the microRNA-200 family were markedly downregulated in cells that had undergone EMT in response to transforming growth factor (TGF)-β or to ectopic expression of the protein tyrosine phosphatase Pez, suggesting that downregulation of themicroRNAs may be an important step in tumour progression.
References
More filters
Journal ArticleDOI

MicroRNAs: Genomics, Biogenesis, Mechanism, and Function

TL;DR: Although they escaped notice until relatively recently, miRNAs comprise one of the more abundant classes of gene regulatory molecules in multicellular organisms and likely influence the output of many protein-coding genes.
Journal ArticleDOI

The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14

TL;DR: Two small lin-4 transcripts of approximately 22 and 61 nt were identified in C. elegans and found to contain sequences complementary to a repeated sequence element in the 3' untranslated region (UTR) of lin-14 mRNA, suggesting that lin- 4 regulates lin- 14 translation via an antisense RNA-RNA interaction.
Journal ArticleDOI

Prediction of Mammalian MicroRNA Targets

TL;DR: The predicted regulatory targets of mammalian miRNAs were enriched for genes involved in transcriptional regulation but also encompassed an unexpectedly broad range of other functions.
Journal ArticleDOI

Identification of novel genes coding for small expressed RNAs.

TL;DR: It is shown that many 21- and 22-nt expressed RNAs, termed microRNAs, exist in invertebrates and vertebrates and that some of these novel RNAs are highly conserved, which suggests that sequence-specific, posttranscriptional regulatory mechanisms mediated by smallRNAs are more general than previously appreciated.
Journal ArticleDOI

MicroRNA genes are transcribed by RNA polymerase II.

TL;DR: The first direct evidence that miRNA genes are transcribed by RNA polymerase II (pol II) is presented and the detailed structure of a miRNA gene is described, for the first time, by determining the promoter and the terminator of mir‐23a∼27a‐24‐2.
Related Papers (5)