scispace - formally typeset
Journal ArticleDOI

Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity.

Reads0
Chats0
TLDR
Gene targeting in mice revealed important physiological roles for Bim and revealed that Bim is required for hematopoietic homeostasis and as a barrier to autoimmunity.
Abstract
Apoptosis can be triggered by members of the Bcl-2 protein family, such as Bim, that share only the BH3 domain with this family. Gene targeting in mice revealed important physiological roles for Bim. Lymphoid and myeloid cells accumulated, T cell development was perturbed, and most older mice accumulated plasma cells and succumbed to autoimmune kidney disease. Lymphocytes were refractory to apoptotic stimuli such as cytokine deprivation, calcium ion flux, and microtubule perturbation but not to others. Thus, Bim is required for hematopoietic homeostasis and as a barrier to autoimmunity. Moreover, particular death stimuli appear to activate apoptosis through distinct BH3-only proteins.

read more

Citations
More filters
Journal ArticleDOI

The BCL-2 protein family: opposing activities that mediate cell death

TL;DR: New insights into interactions among BCL-2 family proteins reveal how these proteins are regulated, but a unifying hypothesis for the mechanisms they use to activate caspases remains elusive.
Journal ArticleDOI

The Bcl2 family: regulators of the cellular life-or-death switch.

TL;DR: A better understanding of how the Bcl2 family controls caspase activation should result in new, more effective therapeutic approaches in tissue homeostasis and cancer.
Journal ArticleDOI

Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

Lorenzo Galluzzi, +186 more
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Journal ArticleDOI

Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy

TL;DR: The biochemical, structural and genetic studies that have clarified how the interplay between members of the BCL-2 family on mitochondria sets the apoptotic threshold are discussed, illuminating the physiological control of apoptosis, the pathological consequences of its dysregulation and the promising search for novel cancer therapies that target the BCA2 protein family.
Journal Article

The expanding role of mitochondria in apoptosis

TL;DR: The complexity of the apoptotic program began to increase with the discovery of Bcl-2, a gene whose product causes resistance to apoptosis in lymphocytes, and the complex role of mitochondria in apoptosis came into focus when biochemical studies identified several mitochondrial proteins that are able to activate cellular apoptotic programs directly.
References
More filters
Journal ArticleDOI

Caspases: Enemies Within

TL;DR: This work has shown that understanding caspase regulation is intimately linked to the ability to rationally manipulate apoptosis for therapeutic gain.
Journal ArticleDOI

Apoptosis in the pathogenesis and treatment of disease

TL;DR: In multicellular organisms, homeostasis is maintained through a balance between cell proliferation and cell death, and recent evidence suggests that alterations in cell survival contribute to the pathogenesis of a number of human diseases.
Journal ArticleDOI

The Bcl-2 Protein Family: Arbiters of Cell Survival

TL;DR: Bcl-2 and related cytoplasmic proteins are key regulators of apoptosis, the cell suicide program critical for development, tissue homeostasis, and protection against pathogens.
Journal ArticleDOI

Cleavage of BID by Caspase 8 Mediates the Mitochondrial Damage in the Fas Pathway of Apoptosis

TL;DR: The results indicate that BID is a mediator of mitochondrial damage induced by Casp8, and coexpression of BclxL inhibits all the apoptotic changes induced by tBID.
Journal ArticleDOI

Bid, a Bcl2 Interacting Protein, Mediates Cytochrome c Release from Mitochondria in Response to Activation of Cell Surface Death Receptors

TL;DR: The purification of a cytosolic protein that induces cytochrome c release from mitochondria in response to caspase-8, the apical caspases activated by cell surface death receptors such as Fas and TNF is reported.
Related Papers (5)