scispace - formally typeset
Open AccessJournal ArticleDOI

The Fluorescence Detector of the Pierre Auger Observatory

J. Abraham, +529 more
- 11 Aug 2010 - 
- Vol. 620, Iss: 2, pp 227-251
Reads0
Chats0
TLDR
The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays as discussed by the authors, which combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array.
Abstract
The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.

read more

Content maybe subject to copyright    Report

The fluorescence detector of the Pierre Auger Observatory
J. Abraham
g
, P. Abreu
bl
, M. Aglietta
ax
, C. Aguirre
k
, E.J. Ahn
ca
, D. Allard
ab
, I. Allekotte
a
, J. Allen
cd
,
P. Allison
cf
, J. Alvarez-Mun
˜
iz
bs
, M. Ambrosio
ar
, L. Anchordoqui
cp
, S. Andringa
bl
, A. Anzalone
av,aw
,
C. Aramo
ar
, E. Arganda
bp
, S. Argir
o
au
, K. Arisaka
ci
, F. Arneodo
ay
, F. Arqueros
bp
, T. Asch
ai
, H. Asorey
a
,
P. Assis
bl
, J. Aublin
ab
, M. Ave
cj
, G. Avila
i
, A. Bacher
ai
,T.B
¨
acker
am
, D. Badagnani
e
, K.B. Barber
j
,
A.F. Barbosa
m
, H.J.M. Barbosa
p
, N. Barenthien
al
, S.L.C. Barroso
s
, B. Baughman
cf
, P. Bauleo
by
, J.J. Beatty
cf
,
T. Beau
ab
, B.R. Becker
cm
, K.H. Becker
ag
, A. Belle
´
toile
ae
, J.A. Bellido
j,cg
, S. BenZvi
co
, C. Berat
ae
,
P. Bernardini
aq
, X. Bertou
a
, P.L. Biermann
aj
, P. Billoir
ad
, O. Blanch-Bigas
ad
, F. Blanco
bp
, C. Bleve
aq
,
H. Bl
¨
umer
al,ah
, M. Boha
´
c
ˇ
ova
´
cj,y
, E. Bollmann
ah
, H. Bolz
ah
, C. Bonifazi
ad
, R. Bonino
ax
, N. Borodai
bj
,
F. Bracci
as
, J. Brack
by
, P. Brogueira
bl
, W.C. Brown
bz
, R. Bruijn
bu
, P. Buchholz
am
, A. Bueno
br
,
R.E. Burton
bw
, N.G. Busca
ab
, K.S. Caballero-Mora
al
, D. Camin
ap
, L. Caramete
aj
, R. Caruso
at
,
W. Carvalho
p
, A. Castellina
ax
, J. Castro
bb
, O. Catalano
av,aw
, L. Cazon
cj
, R. Cester
au
, J. Chauvin
ae
,
A. Chiavassa
ax
, J.A. Chinellato
q
, A. Chou
ca,cd
, J. Chudoba
y
, J. Chye
cc
, P.D.J. Clark
bu
, R.W. Clay
j
,
E. Colombo
b
, R. Conceic-
~
ao
bl
, B. Connolly
cn
, F. Contreras
h
, J. Coppens
bf,bh
, A. Cordero
bb
, A. Cordier
ac
,
U. Cotti
bd
, S. Coutu
cg
, C.E. Covault
bw
, A. Creusot
bn
, A. Criss
cg
, J.W. Cronin
cj
, J. Cuautle
bb
, A. Curutiu
aj
,
S. Dagoret-Campagne
ac
, R. Dallier
af
, F. Daudo
au
, K. Daumiller
ah
, B.R. Dawson
j
, R.M. de Almeida
q
,
M. De Domenico
at
, C. De Donato
ap
, S.J. de Jong
bf
, G. De La Vega
g
, W.J.M. de Mello Junior
q
,
J.R.T. de Mello Neto
v
, I. De Mitri
aq
, V. de Souza
o
, K.D. de Vries
bg
, G. Decerprit
ab
, L. del Peral
bq
,
O. Deligny
aa
, A. Della Selva
ar
, C. Delle Fratte
as
, H. Dembinski
ak
, C. Di Giulio
as
, J.C. Diaz
cc
, P.N. Diep
cq
,
C. Dobrigkeit
q
, J.C. D’Olivo
be
, P.N. Dong
cq
, D. Dornic
aa
, A. Dorofeev
cb
, J.C. dos Anjos
m
, M.T. Dova
e
,
D. D’Urso
ar
, I. Dutan
aj
, M.A. DuVernois
ck
, R. Engel
ah
, M. Erdmann
ak
, C.O. Escobar
q
, A. Etchegoyen
b
,
P. Facal San Luis
cj,bs
, H. Falcke
bf,bi
, G. Farrar
cd
, A.C. Fauth
q
, N. Fazzini
ca
, F. Ferrer
bw
, A. Ferrero
b
,
B. Fick
cc
, A. Filevich
b
, A. Filipc
ˇ
ic
ˇ
bm,bn
, I. Fleck
am
, S. Fliescher
ak
, R. Fonte
at
, C.E. Fracchiolla
by
,
E.D. Fraenkel
bg
, W. Fulgione
ax
, R.F. Gamarra
b
, S. Gambetta
an
, B. Garcı
´
a
g
, D. Garcı
´
aGa
´
mez
br
,
D. Garcia-Pinto
bp
, X. Garrido
ah,ac
, H. Geenen
ag
, G. Gelmini
ci
, H. Gemmeke
ai
, P.L. Ghia
aa,ax
, U. Giaccari
aq
,
K. Gibbs
cj
, M. Giller
bk
, J. Gitto
f
, H. Glass
ca
, L.M. Goggin
cp
, M.S. Gold
cm
, G. Golup
a
, F. Gomez Albarracin
e
,
M. Go
´
mez Berisso
a
, P.F. Gomez Vitale
h
, P. Gonc- alves
bl
, M. Gonc- alves do Amaral
w
, D. Gonzalez
al
,
J.G. Gonzalez
br,cb
,D.Go
´
ra
al,bj
, A. Gorgi
ax
, P. Gouffon
p
, E. Grashorn
cf
, V. Grassi
ap
, S. Grebe
bf
, M. Grigat
ak
,
A.F. Grillo
ay
, J. Grygar
y
, Y. Guardincerri
d
, N. Guardone
at
, C. Guerard
al
, F. Guarino
ar
, R. Gumbsheimer
ah
,
G.P. Guedes
r
, J. Gutie
´
rrez
bq
, J.D. Hague
cm
, V. Halenka
z
, P. Hansen
e
, D. Harari
a
, S. Harmsma
bg,bh
,
S. Hartmann
ag
, J.L. Harton
by
, A. Haungs
ah
, M.D. Healy
ci
, T. Hebbeker
ak
, G. Hebrero
bq
, D. Heck
ah
,
C. Hojvat
ca
, V.C. Holmes
j
, P. Homola
bj
, G. Hofman
bz
, J.R. H
¨
orandel
bf
, A. Horneffer
bf
, M. Horvat
bn
,
M. Hrabovsky
´
z,y
, H. Hucker
ah
, T. Huege
ah
, M. Hussain
bn
, M. Iarlori
ao
, A. Insolia
at
, F. Ionita
cj
,
A. Italiano
at
, S. Jiraskova
bf
, M. Kaducak
ca
, K.H. Kampert
ag
, T. Karova
y
, P. Kasper
ca
,B.Ke
´
gl
ac
,
B. Keilhauer
ah
, E. Kemp
q
, H. Kern
ah
, R.M. Kieckhafer
cc
, H.O. Klages
ah
, M. Kleifges
ai
, J. Kleinfeller
ah
,
R. Knapik
by
, J. Knapp
bu
, D.-H. Koang
ae
, A. Kopmann
ai
, A. Krieger
b
,O.Kr
¨
omer
ai
, D. Kruppke-Hansen
ag
,
D. Kuempel
ag
, N. Kunka
ai
, A. Kusenko
ci
, G. La Rosa
av,aw
, C. Lachaud
ab
, B.L. Lago
v
, P. Lautridou
af
,
M.S.A.B. Le
~
ao
u
, D. Lebrun
ae
, P. Lebrun
ca
, J. Lee
ci
, M.A. Leigui de Oliveira
u
, A. Lemiere
aa
,
A. Letessier-Selvon
ad
, M. Leuthold
ak
, I. Lhenry-Yvon
aa
,R.Lo
´
pez
bb
, A. Lopez Ag
¨
uera
bs
, K. Louedec
ac
,
J. Lozano Bahilo
br
, A. Lucero
ax
, H. Lyberis
aa
, M.C. Maccarone
av,aw
, C. Macolino
ao
, S. Maldera
ax
,
M. Malek
ca
, D. Mandat
y
, P. Mantsch
ca
, F. Marchetto
au
, A.G. Mariazzi
e
, I.C. Maris
al
,
H.R. Marquez Falcon
bd
, D. Martello
aq
, O. Martineau
ah
, O. Martı
´
nez Bravo
bb
, H.J. Mathes
ah
,
ARTICLE IN PRESS
Contents lists available at ScienceDirect
journal homepage: www.elsevier.com/locate/nima
Nuclear Instruments and Methods in
Physics Research A
0168-9002/$ - see front matter & 2010 Elsevier B.V All rights reserved.
doi:10.1016/j.nima.2010.04.023
Nuclear Instruments and Methods in Physics Research A 620 (2010) 227–251

ARTICLE IN PRESS
J. Matthews
cb,ch
, J.A.J. Matthews
cm
, G. Matthiae
as
, D. Maurizio
au
, P.O. Mazur
ca
, M. McEwen
bq
,
R.R. McNeil
cb
, G. Medina-Tanco
be
, M. Melissas
al
, D. Melo
au
, E. Menichetti
au
, A. Menshikov
ai
,
R. Meyhandan
cb
, M.I. Micheletti
b
, G. Miele
ar
, W. Miller
cm
, L. Miramonti
ap
, S. Mollerach
a
,
M. Monasor
bp
, D. Monnier Ragaigne
ac
, F. Montanet
ae
, B. Morales
be
, C. Morello
ax
, J.C. Moreno
e
,
C. Morris
cf
, M. Mostafa
´
by
, C.A. Moura
ar
, M. Mucchi
au
, S. Mueller
ah
, M.A. Muller
q
, R. Mussa
au
,
G. Navarra
ax
, J.L. Navarro
br
, S. Navas
br
, P. Necesal
y
, L. Nellen
be
, F. Nerling
ah
, C. Newman-Holmes
ca
,
D. Newton
bu
, P.T. Nhung
cq
, D. Nicotra
at
, N. Nierstenhoefer
ag
, D. Nitz
cc
, D. Nosek
x
, L. Noz
ˇ
ka
y
,
M. Nyklicek
y
, J. Oehlschl
¨
ager
ah
, A. Olinto
cj
, P. Oliva
ag
, V.M. Olmos-Gilbaja
bs
, M. Ortiz
bp
, F. Ortolani
as
,
B. Oßwald
ai
, N. Pacheco
bq
, D. Pakk Selmi-Dei
q
, M. Palatka
y
, J. Pallotta
c
, G. Parente
bs
, E. Parizot
ab
,
S. Parlati
ay
, S. Pastor
bo
, M. Patel
bu
, T. Paul
af
, V. Pavlidou
cj,1
, K. Payet
ae
, M. Pech
y
,J.Pe¸kala
bj
, I.M. Pepe
t
,
L. Perrone
az
, R. Pesce
an
, E. Petermann
cl
, S. Petrera
ao
, P. Petrinca
as
, A. Petrolini
an
, Y. Petrov
by
,
J. Petrovic
bh
, C. Pfendner
co
, A. Pichel
f
, R. Piegaia
d
, T. Pierog
ah
, M. Pimenta
bl
, T. Pinto
bo
, V. Pirronello
at
,
O. Pisanti
ar
, M. Platino
b
, J. Pochon
a
, V.H. Ponce
a
, M. Pontz
am
, J. Pouryamout
ag
, L. Prado Jr.
q
,
P. Privitera
cj
, M. Prouza
y,
, E.J. Quel
c
, G. Raia
ba
, J. Rautenberg
ag
, O. Ravel
af
, D. Ravignani
b
,
A. Redondo
bq
, H.C. Reis
q
, S. Reucroft
ce
, B. Revenu
af
, F.A.S. Rezende
m
, J. Ridky
y
, S. Riggi
at
, M. Risse
ag
,
C. Rivi
ere
ae
, V. Rizi
ao
, C. Robledo
bb
, M.D. Roberts
cg
, G. Rodriguez
as
, J. Rodriguez Martino
at
,
J. Rodriguez Rojo
h
, I. Rodriguez-Cabo
bs
, M.D. Rodrı
´
guez-Frı
´
as
bq
, G. Ros
bp,bq
, J. Rosado
bp
, T. Rossler
z
,
M. Roth
ah
, B. Rouille
´
-d’Orfeuil
ab
, E. Roulet
a
, A.C. Rovero
f
, F. Salamida
ao
, H. Salazar
bb,2
, G. Salina
as
,
F. Sa
´
nchez
be
, M. Santander
h
, C.E. Santo
bl
, E.M. Santos
v
, F. Sarazin
bx
, S. Sarkar
bt
, R. Sato
h
, N. Scharf
ak
,
V. Scherini
ag
, H. Schieler
ah
, P. Schiffer
ak
, G. Schleif
ah
, A. Schmidt
ai
, F. Schmidt
cj
, T. Schmidt
al
,
O. Scholten
bg
, H. Schoorlemmer
bf
, J. Schovancova
y
, P. Schova
´
nek
y
, F. Schroeder
ah
, S. Schulte
ak
,
F. Sch
¨
ussler
ah
, D. Schuster
bx
, S.J. Sciutto
e
, M. Scuderi
at
, A. Segreto
av,aw
, D. Semikoz
ab
, G. Sequieros
au
,
M. Settimo
aq
, R.C. Shellard
m,n
, I. Sidelnik
b
, B.B. Siffert
v
, A. Smia"kowski
bk
,R.
ˇ
Smı
´
da
y
, A.G.K. Smith
j
,
B.E. Smith
bu
, G.R. Snow
cl
, P. Sommers
cg
, J. Sorokin
j
, H. Spinka
bv,ca
, R. Squartini
h
, E. Strazzeri
ac
,
A. Stutz
ae
, F. Suarez
b
, T. Suomij
¨
arvi
aa
, A.D. Supanitsky
be
, M.S. Sutherland
cf
, J. Swain
ce
, Z. Szadkowski
bk
,
A. Tamashiro
f
, A. Tamburro
al
, T. Tarutina
e
, O. Tas
-
c
˘
au
ag
, R. Tcaciuc
am
, D. Tcherniakhovski
ai
, N.T. Thao
cq
,
D. Thomas
by
, R. Ticona
l
, J. Tiffenberg
d
, C. Timmermans
bh,bf
, W. Tkaczyk
bk
, C.J. Todero Peixoto
u
,
B. Tome
´
bl
, A. Tonachini
au
, I. Torres
bb
, P. Trapani
au
, P. Travnicek
y
, D.B. Tridapalli
p
, G. Tristram
ab
,
E. Trovato
at
, V. Tuci
as
, M. Tueros
e
, E. Tusi
as
, R. Ulrich
ah
, M. Unger
ah
, M. Urban
ac
, J.F. Valde
´
s Galicia
be
,
I. Valin
˜
o
ah
, L. Valore
ar
, A.M. van den Berg
bg
, J.R. Va
´
zquez
bp
, R.A. Va
´
zquez
bs
, D. Veberic
ˇ
bn,bm
,
A. Velarde
l
, T. Venters
cj
, V. Verzi
as
, M. Videla
g
, L. Villasen
˜
or
bd
, G. Vitali
as
, S. Vorobiov
bn
,
L. Voyvodic
ca,3
, H. Wahlberg
e
, P. Wahrlich
j
, O. Wainberg
b
, D. Warner
by
, S. Westerhoff
co
, B.J. Whelan
j
,
N. Wild
j
, C. Wiebusch
ag
, G. Wieczorek
bk
, L. Wiencke
bx
, B. Wilczyn
´
ska
bj
, H. Wilczyn
´
ski
bj
,
C. Wileman
bu
, M.G. Winnick
j
,G.W
¨
orner
ah
,H.Wu
ac
, B. Wundheiler
b
, T. Yamamoto
cj,4
, P. Younk
by
,
G. Yuan
cb
, A. Yushkov
ar
, E. Zas
bs
, D. Zavrtanik
bn,bm
, M. Zavrtanik
bm,bn
, I. Zaw
cd
, A. Zepeda
bc,2
,
M. Ziolkowski
am
, The Pierre Auger Collaboration
a
Centro Ato
´
mico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche, Argentina
b
Centro Ato
´
mico Constituyentes (Comisio
´
n Nacional de Energı
´
a Ato
´
mica/CONICET/UTN-FRBA), Buenos Aires, Argentina
c
Centro de Investigaciones en La
´
seres y Aplicaciones, CITEFA and CONICET, Argentina
d
Departamento de
´
sica, FCEyN, Universidad de Buenos Aires y CONICET, Argentina
e
IFLP, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
f
Instituto de Astronomı
´
ayFı
´
sica del Espacio (CONICET), Buenos Aires, Argentina
g
Universidad Tecnolo
´
gica Nacional, Facultad Regional Mendoza, (UTN-FRM), Mendoza, Argentina
h
Pierre Auger Southern Observatory, Malarg
¨
ue, Argentina
i
Pierre Auger Southern Observatory and Comisio
´
n Nacional de Energı
´
a Ato
´
mica, Malarg
¨
ue, Argentina
j
University of Adelaide, Adelaide, S.A., Australia
k
Universidad Catolica de Bolivia, La Paz, Bolivia
l
Universidad Mayor de San Andre
´
s, Bolivia
m
Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ, Brazil
n
Pontifı
´
cia Universidade Cato
´
lica, Rio de Janeiro, RJ, Brazil
o
Universidade de S
~
ao Paulo, Instituto de
´
sica, S
~
ao Carlos, SP, Brazil
p
Universidade de S
~
ao Paulo, Instituto de
´
sica, S
~
ao Paulo, SP, Brazil
q
Universidade Estadual de Campinas, IFGW, Campinas, SP, Brazil
r
Universidade Estadual de Feira de Santana, Brazil
s
Universidade Estadual do Sudoeste da Bahia, Vitoria da Conquista, BA, Brazil
t
Universidade Federal da Bahia, Salvador, BA, Brazil
u
Universidade Federal do ABC, Santo Andre
´
, SP, Brazil
v
Universidade Federal do Rio de Janeiro, Instituto de
´
sica, Rio de Janeiro, RJ, Brazil
w
Universidade Federal Fluminense, Instituto de Fisica, Nitero
´
i, RJ, Brazil
x
Charles University, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, Prague, Czech Republic
y
Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
J. Abraham et al. / Nuclear Instruments and Methods in Physics Research A 620 (2010) 227–251228

ARTICLE IN PRESS
z
Palacky
´
University, Olomouc, Czech Republic
aa
Institut de Physique Nucle
´
aire d’Orsay (IPNO), Universite
´
Paris 11, CNRS-IN2P3, Orsay, France
ab
Laboratoire AstroParticule et Cosmologie (APC), Universite
´
Paris 7, CNRS-IN2P3, Paris, France
ac
Laboratoire de l’Acce
´
le
´
rateur Line
´
aire (LAL), Universite
´
Paris 11, CNRS-IN2P3, Orsay, France
ad
Laboratoire de Physique Nucle
´
aire et de Hautes Energies (LPNHE), Universite
´
s Paris 6 et Paris 7, CNRS-IN2P3, Paris Cedex 05, France
ae
Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Universite
´
Joseph Fourier, INPG, CNRS-IN2P3, Grenoble, France
af
SUBATECH, CNRS-IN2P3, Nantes, France
ag
Bergische Universit
¨
at Wuppertal, Wuppertal, Germany
ah
Forschungszentrum Karlsruhe, Institut f
¨
ur Kernphysik, Karlsruhe, Germany
ai
Forschungszentrum Karlsruhe, Institut f
¨
ur Prozessdatenverarbeitung und Elektronik, Germany
aj
Max-Planck-Institut f
¨
ur Radioastronomie, Bonn, Germany
ak
RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
al
Universit
¨
at Karlsruhe (TH), Institut f
¨
ur Experimentelle Kernphysik (IEKP), Karlsruhe, Germany
am
Universit
¨
at Siegen, Siegen, Germany
an
Dipartimento di Fisica dell’Universit
a and INFN, Genova, Italy
ao
Universit
a dell’Aquila and INFN, L’Aquila, Italy
ap
Universit
a di Milano and Sezione INFN, Milan, Italy
aq
Dipartimento di Fisica dell’Universit
a del Salento and Sezione INFN, Lecce, Italy
ar
Universit
a di Napoli ‘‘Federico II’’ and Sezione INFN, Napoli, Italy
as
Universit
a di Roma II ‘‘Tor Vergata’’ and Sezione INFN, Roma, Italy
at
Universit
a di Catania and Sezione INFN, Catania, Italy
au
Universit
a di Torino and Sezione INFN, Torino, Italy
av
Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo (INAF), Palermo, Italy
aw
Sezione INFN, Catania, Italy
ax
Istituto di Fisica dello Spazio Interplanetario (INAF), Universit
a di Torino and Sezione INFN, Torino, Italy
ay
INFN, Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila), Italy
az
Dipartimento di Ingegneria dell’Innovazione dell’Universit
a del Salento and Sezione INFN, Lecce, Italy
ba
INFN, Laboratori Nazionali del Sud, Catania, Italy
bb
Beneme
´
rita Universidad Auto
´
noma de Puebla, Puebla, Mexico
bc
Centro de Investigacio
´
n y de Estudios Avanzados del IPN (CINVESTAV), Me
´
xico, D.F., Mexico
bd
Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan, Mexico
be
Universidad Nacional Autonoma de Mexico, Mexico, D.F., Mexico
bf
IMAPP, Radboud University, Nijmegen, Netherlands
bg
Kernfysisch Versneller Instituut, University of Groningen, Groningen, Netherlands
bh
NIKHEF, Amsterdam, Netherlands
bi
ASTRON, Dwingeloo, Netherlands
bj
Institute of Nuclear Physics PAN, Krakow, Poland
bk
University of Ło
´
dz
´
, Ło
´
dz
´
, Poland
bl
LIP and Instituto Superior Te
´
cnico, Lisboa, Portugal
bm
J. Stefan Institute, Ljubljana, Slovenia
bn
Laboratory for Astroparticle Physics, University of Nova Gorica, Slovenia
bo
Instituto de
´
sica Corpuscular, CSIC-Universitat de Val
encia, Valencia, Spain
bp
Universidad Complutense de Madrid, Madrid, Spain
bq
Universidad de Alcala
´
, Alcala
´
de Henares (Madrid), Spain
br
Universidad de Granada & C.A.F.P.E., Granada, Spain
bs
Universidad de Santiago de Compostela, Spain
bt
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK
bu
School of Physics and Astronomy, University of Leeds, UK
bv
Argonne National Laboratory, Argonne, IL, USA
bw
Case Western Reserve University, Cleveland, OH, USA
bx
Colorado School of Mines, Golden, CO, USA
by
Colorado State University, Fort Collins, CO, USA
bz
Colorado State University, Pueblo, CO, USA
ca
Fermilab, Batavia, IL, USA
cb
Louisiana State University, Baton Rouge, LA, USA
cc
Michigan Technological University, Houghton, MI, USA
cd
New York University, New York, NY, USA
ce
Northeastern University, Boston, MA, USA
cf
Ohio State University, Columbus, OH, USA
cg
Pennsylvania State University, University Park, PA, USA
ch
Southern University, Baton Rouge, LA, USA
ci
University of California, Los Angeles, CA, USA
cj
University of Chicago, Enrico Fermi Institute, Chicago, IL, USA
ck
University of Hawaii, Honolulu, HI, USA
cl
University of Nebraska, Lincoln, NE, USA
cm
University of New Mexico, Albuquerque, NM, USA
cn
University of Pennsylvania, Philadelphia, PA, USA
co
University of Wisconsin, Madison, WI, USA
cp
University of Wisconsin, Milwaukee, WI, USA
cq
Institute for Nuclear Science and Technology (INST), Hanoi, Vietnam
Corresponding author.
E-mail address: prouza@fzu.cz (M. Prouza).
1
At Caltech, Pasadena, USA.
2
On leave of absence at the Instituto Nacional de Astrofisica, Optica y Electronica.
3
Deceased.
4
At Konan University, Kobe, Japan.
J. Abraham et al. / Nuclear Instruments and Methods in Physics Research A 620 (2010) 227–251 229

ARTICLE IN PRESS
article info
Article history:
Received 27 May 2009
Received in revised form
16 March 2010
Accepted 7 April 2010
Available online 18 April 2010
Keywords:
Cosmic rays
Fluorescence detector
abstract
The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a
surface array to measure secondary particles at ground level together with a fluorescence detector to
measure the development of air showers in the atmosphere above the array. The fluorescence detector
comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged
particles of cosmic ray air showers. In this paper we describe the components of the fluorescence
detector including its optical system, the design of the camera, the electronics, and the systems for
relative and absolute calibration. We also discuss the operation and the monitoring of the detector.
Finally, we evaluate the detector performance and precision of shower reconstructions.
& 2010 Elsevier B.V All rights reserved.
1. Introduction
The hybrid detector of the Pierre Auger Observatory [1]
consists of 1600 surface stationswater Cherenkov tanks and
their associated electronicsand 24 air fluorescence telescopes.
The Observatory is located outside the city of Malarg
¨
ue, Argentina
(691W, 351S, 1400 m a.s.l.) and the detector layout is shown in
Fig. 1. Details of the construction, deployment and maintenance of
the array of surface detectors are described elsewhere [2]. In this
paper we will concentrate on details of the fluorescence detector
and its performance.
The detection of ultra-high energy
5
cosmic rays using nitrogen
fluorescence emission induced by extensive air showers is a well
established technique, used previously by the Fly’s Eye [4] and
HiRes [5] experiments. It is used also for the Telescope Array [6]
project that is currently under construction, and it has been
proposed for the satellite-based EUSO (Extreme Universe Space
Observatory) and OWL (Orbiting Wide-angle Light-collectors)
projects, which have recently evolved into the proposals of the
JEM-EUSO mission [7] (EUSO onboard the Japanese Experiment
Module at the International Space Station), and of the S-EUSO
free-flying satellite mission [8].
Charged particles generated during the development of
extensive air showers excite atmospheric nitrogen molecules,
and these molecules then emit fluorescence light in the
3002430 nm range (see Fig. 2). The number of emitted
fluorescence photons is proportional to the energy deposited in
the atmosphere due to electromagnetic energy losses by the
charged particles. By measuring the rate of fluorescence emission
as a function of atmospheric slant depth X, an air fluorescence
detector measures the longitudinal development profile dE=dXðXÞ of
the air shower. The integral of this profile gives the total energy
dissipated electromagnetically, which is approximately 90% of the
total energy of the primary cosmic ray.
For any waveband, the fluorescence yield is defined as the
number of photons emitted in that band per unit of energy loss by
charged particles. The absolute fluorescence yield in air at 293 K
and 1013 hPa from the 337 nm fluorescence band is
5:057 0:71 photons=MeV of energy deposited, as measured in
Ref. [9]. For the reconstruction of the cosmic ray showers at the
Pierre Auger Observatory, this absolute measurement is combined
with the relative yields at other fluorescence bands as measured in
Ref. [10].
6
Since a typical cosmic ray shower spans over 10 km in
altitude, it is important to stress that due to collisional quenching
effects the fluorescence yield is also dependent on pressure,
temperature and humidity of the air [10,12]. More detail about
recent relevant fluorescence yield measurements and a compila-
tion of experimental results is available in a recent review [13].
The fluorescence detector (FD) comprises four observation
sitesLos Leones, Los Morados, Loma Amarilla, and Coihueco
located atop small elevations on the perimeter of the SD array. Six
independent telescopes, each with field of view of 301 301 in
azimuth and elevation, are located in each FD site. The telescopes
face towards the interior of the array so that the combination of the
six telescopes provides 1801 coverage in azimuth. Fig. 3 shows the
arrangement of the telescopes inside an observation site (Fig. 4).
This arrangement of four FD sites was the optimum solution to
the primary design goal of ensuring 100% FD triggering efficiency
above 10
19
eV over the entire area of the surface detector. At the
Malarg
¨
ue site a large flat area, ideal for deployment of the surface
detector, is bordered with a number of small hills suitable for FD
sites. The arrangement of four inward-looking FD sites is a cost-
effective way of ensuring full coverage without wasteful overlaps,
and of minimizing the average distance to detected air showers,
thus reducing uncertainties in atmospheric transmission correc-
tions. Requiring ‘‘stereo’’ observations (showers triggering two FD
sites) was not a strong design criterion because of the excellent
‘‘hybrid’’ geometry reconstruction available when combining
information from the FD and the SD (Section 7), although stereo
events are common at the highest energies.
Fig. 3 depicts an individual FD telescope. The telescope is
housed in a clean climate-controlled building. Nitrogen fluores-
cence light enters through a large UV-passing filter window and a
Schmidt optics corrector ring. The light is focused by a 10 square
meter mirror onto a camera of 440 pixels with photomultiplier
light sensors. Light pulses in the pixels are digitized every 100 ns,
and a hierarchy of trigger levels culminates in the detection and
recording of cosmic ray air showers.
This paper is organized as follows. In Section 2 we describe the
components of the optical system of an individual telescope, and
in Section 3 we focus on the telescope camera. The electronics of a
fluorescence telescope and the data acquisition system (DAQ) of
an FD station are described in Section 4. The details of the
calibration hardware and methods are given in Section 5, and the
performance, operation and monitoring of the fluorescence
detector are explained in Section 6. Finally, in Section 7 we
concentrate on the basics of shower reconstruction using the
measured fluorescence signal, and in Section 8 we summarize.
5
For the purposes of this paper we define the ultra-high energy to be
\10
18
eV.
6
This apparently unusual combination of two distinct experiments is
determined by the fact that although the latter experiment, the AIRFLY, has
already produced very detailed studies of relative band intensities, and of yield
(footnote continued)
dependence on pressure, temperature and humidity, only the preliminary results
for the absolute fluorescence yield were published [11].
J. Abraham et al. / Nuclear Instruments and Methods in Physics Research A 620 (2010) 227–251230

ARTICLE IN PRESS
2. Optical system
The basic elements of the optical system in each FD telescope
are a filter at the entrance window, a circular aperture, a corrector
ring, a mirror and a camera with photomultipliers.
7
The
geometrical layout of the components is depicted in Fig. 6 .
The window is an optical filter made of Schott MUG-6 glass
[15]. This absorbs visible light while transmitting UV photons
from 290 nm up to 410 nm wavelength, which includes
almost all of the nitrogen fluorescence spectrum (see Fig. 5).
Without the filter window, the fluorescence signals would be lost
in the noise of visible photons (Fig. 6).
The aperture, the corrector ring, the mirror, and the PMT
camera constitute a modified Schmidt camera design that
partially corrects spherical aberration and eliminates coma
aberration. The size of the aperture is optimized to keep the spot
size
8
due to spherical aberration within a diameter of 15 mm, i.e.
90% of the light from a distant point source located anywhere
within the 30 1 301 FOV of a camera falls into a circle of this
diameter. This corresponds to an angular spread of 0.51.In
comparison, the FOV of a single camera pixel is 1.51. The light
distribution within the spot is described by the point spread
function (PSF) shown in Fig. 7.
The schematic view of the spot size diagrams over the whole
FOV is shown in Fig. 8, where the rows correspond to viewing
Fig. 1. Status of the Pierre Auger Observatory as of March 2009. Gray dots show the
positions of surface detector stations, lighter gray shades indicate deployed detectors,
while dark gray defines empty positions. Light gray segments indicate the fields of view
of 24 fluorescence telescopes which are located in four buildings on the perimeter of
the surface array. Also shown is a partially completed infill array near the Coihueco
station and the position of the Central Laser Facility (CLF, indicated by a white square).
The description of the CLF and also the description of all other atmospheric monitoring
instruments of the Pierre Auger Observatory is available in Ref. [3].
Fig. 2. Measured fluorescence spectrum in dry air at 800 hPa and 293 K. From Ref. [10].
Fig. 3. Schematic layout of the building with six fluorescence telescopes.
Fig. 4. Schematic view of a fluorescence telescope of the Pierre Auger Observatory.
7
We remind the reader that the system is housed in a clean climate-
controlled building, where an air-conditioning system is set to stabilize the
temperature at 21 1C. This helps to minimize thermal dilation of the system and to
maintain the alignment of mechanical and optical components.
8
The image of the point source at infinity on the focal surface of the optical
system is commonly called the ‘‘spot’’ in optics, but it may be better known as a
‘‘point spread function’’. The size of the spot characterizes the quality of the optical
system.
J. Abraham et al. / Nuclear Instruments and Methods in Physics Research A 620 (2010) 227–251 231

Citations
More filters

The Pierre Auger Collaboration

Martin Will, +494 more
TL;DR: In this article, the Pierre Auger Collaboration has reported evidence for anisotropies in the arrival directions of cosmic rays with energies larger thanEth = 55 EeV and showed that there is a correlation above the isotropic expectation with nearby active galaxies and the largest excess is in a celestial region around the position of the radio galaxy Cen A.
Journal ArticleDOI

The Pierre Auger Cosmic Ray Observatory

A. Aab, +643 more
TL;DR: The Pierre Auger Observatory as mentioned in this paper, the world's largest cosmic ray observatory, has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km$^2$ sr yr.
Journal ArticleDOI

Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 10(17.8) eV

A. Aab, +514 more
- 31 Dec 2014 - 
TL;DR: In this article, a study of the distributions of the depth of maximum, X-max, of extensive air-shower profiles with energies above 10(17.8) eV was performed with the fluorescence telescopes of the Pierre Auger Observatory.
Journal ArticleDOI

Measurements of the Cosmic Ray Composition with Air Shower Experiments

TL;DR: In this article, a review of air shower data related to the mass composition of cosmic rays above 10 15 eV is presented, and the analysis of these experimental results in terms of primary mass is highly susceptible to the theoretical uncertainties of hadronic interactions in air showers.
Journal ArticleDOI

Current Direct Neutrino Mass Experiments

TL;DR: In this paper, the status and perspectives of direct neutrino mass experiments are reviewed, which investigate the kinematics of ...read more
References
More filters
Journal ArticleDOI

Geant4—a simulation toolkit

S. Agostinelli, +126 more
TL;DR: The Gelfant 4 toolkit as discussed by the authors is a toolkit for simulating the passage of particles through matter, including a complete range of functionality including tracking, geometry, physics models and hits.
BookDOI

Optical Shop Testing

Daniel Malacara
- 08 Jun 2007 - 
TL;DR: In this paper, a completely rewritten chapter was added to cover wavefront fitting and evaluation as well as holographic and Moire methods, and an appendix was added suggesting appropriate tests for typical optical surfaces.
Journal ArticleDOI

Fundamental stellar photometry for standards of spectral type on the revised system of the Yerkes spectral atlas

TL;DR: In this paper, a new sub-commission of the International Astronomical Union (IAU) was proposed to establish an ideal photoelectric color and magnitude system, which would have as its task "the establishment of an 'ideal' photo-electric color-and magnitude system".
Journal ArticleDOI

Measurement of the energy spectrum of cosmic rays above 10(18) eV using the Pierre Auger Observatory

J. Abraham, +492 more
- 08 Mar 2010 - 
TL;DR: In this article, the authors reported a measurement of the flux of cosmic rays with unprecedented precision and statistics using the Pierre Auger Observatory based on fluorescence observations in coincidence with at least one surface detector.
Journal ArticleDOI

The Utah Fly's Eye detector

TL;DR: In this paper, the authors report the details of the design, operation and performance of the University of Utah Fly's Eye detector which was built to record the passage of ultra-high energy cosmic rays through the atmosphere via atmospheric fluorescence.
Related Papers (5)

Properties and performance of the prototype instrument for the Pierre Auger Observatory

J. Abraham, +356 more

Measurement of the Depth of Maximum of Extensive Air Showers above 10(18) eV

J. Abraham, +64 more

Measurement of the energy spectrum of cosmic rays above 10(18) eV using the Pierre Auger Observatory

J. Abraham, +492 more
- 08 Mar 2010 - 

The Pierre Auger Cosmic Ray Observatory

A. Aab, +643 more
Frequently Asked Questions (1)
Q1. What have the authors contributed in "The fluorescence detector of the pierre auger observatory" ?

The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper the authors describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. The authors also discuss the operation and the monitoring of the detector. Finally, the authors evaluate the detector performance and precision of shower reconstructions.