scispace - formally typeset
Search or ask a question

Showing papers on "Biomarker (medicine) published in 2014"


Journal ArticleDOI
TL;DR: Digital PCR-based technologies used to evaluate the ability of circulating tumor DNA (ctDNA) to detect tumors in 640 patients with various cancer types suggest that ctDNA is a sensitive, specific and robust biomarker that can be used for a variety of clinical and research purposes in patients with several multiple different types of cancer.
Abstract: BACKGROUND: The development of minimally-invasive methods to detect and monitor tumors continues to be a major challenge in oncology. We used digital PCR-based technologies to evaluate the ability of circulating tumor DNA (ctDNA) to detect tumors in 640 patients with various cancer types. In particular we studied the plasma of 14 medulloblastoma, 13 WHO grade 2-3 glioma and 14 WHO grade IV astrocytoma cases for levels of ctDNA. METHODS: The basis of our approach is to differentiate DNA shed by normal cells from DNA derived from tumor cells. In order to distinguish the two populations of cell-free DNA, we first identify a tumor-specific alteration. We then query for that exact mutation in matching plasma from the same patient to generate a personalized tumor biomarker. Only DNA derived from the tumor will harbor the genetic alteration. We initially use targeted, exomic, or whole genome sequencing to identify sequence or structural alterations in tumor tissues of 410 individuals. DNA was extracted from less than 5 ml of plasma in each case. The majority of plasma samples were queried for levels of ctDNA using a high fidelity next-generation sequencing approach coined Safe-SeqS. RESULTS: We found that at least one tumor-specific mutant molecule could be identified in 75% of patients with advanced ovarian, colorectal, bladder, gastroesophoageal, pancreatic, breast, melanoma, hepatocellular and head and neck cancers, but in less than 50% of primary brain, renal, prostate, or thyroid cancers. Approximately 40% of medulloblastoma and 10% of low or high grade glioma cases had detectable levels of ctDNA. In patients with localized non-CNS tumors, ctDNA was detected in 73%, 57%, 48% and 50% of patients with colorectal cancer, gastroesophageal cancer, pancreatic cancer, and breast adenocarcinoma, respectively. Finally, we assessed whether ctDNA could provide clues into the mechanisms underlying resistance to epidermal growth factor receptor (EGFR) blockade in 24 colorectal cancer patients who objectively responded to therapy but who subsequently relapsed. Twenty-three (96%) of these patients developed one or more mutations in genes involved in the mitogen-activated protein kinase (MAPK) pathway. CONCLUSIONS: Taken together, these data suggest that ctDNA is a sensitive, specific and robust biomarker that can be used for a variety of clinical and research purposes in patients with several multiple different types of cancer. For individuals with CNS neoplasms, alternate strategies may need to be developed in order to detect cell-free tumor derived DNA at levels that are clinically meaningful. ABSTRACT CATEGORY: Neuropathology & Tumor Biomarkers.

1,393 citations


Journal ArticleDOI
TL;DR: The APOE4‐by‐sex interaction in conversion risk (from healthy aging to mild cognitive impairment (MCI)/AD or from MCI to AD) and cerebrospinal fluid (CSF) biomarker levels is examined.
Abstract: Objective The APOE4 allele is the strongest genetic risk factor for sporadic Alzheimer’s disease (AD). Case-control studies suggest the APOE4 link to AD is stronger in women. We examined the APOE4-by-sex interaction in conversion risk (from healthy aging to mild cognitive impairment (MCI)/AD or from MCI to AD) and cerebrospinal fluid (CSF) biomarker levels.

569 citations


Journal ArticleDOI
TL;DR: It is discovered that CSF α-synuclein was readily transported to blood, with a small portion being contained in exosomes that are relatively specific to the central nervous system (CNS), which may lead to a more convenient and robust assessment of Parkinson’s disease clinically.
Abstract: Extracellular α-synuclein is important in the pathogenesis of Parkinson’s disease (PD) and also as a potential biomarker when tested in the cerebrospinal fluid (CSF). The performance of blood plasma or serum α-synuclein as a biomarker has been found to be inconsistent and generally ineffective, largely due to the contribution of peripherally derived α-synuclein. In this study, we discovered, via an intracerebroventricular injection of radiolabeled α-synuclein into mouse brain, that CSF α-synuclein was readily transported to blood, with a small portion being contained in exosomes that are relatively specific to the central nervous system (CNS). Consequently, we developed a technique to evaluate the levels of α-synuclein in these exosomes in individual plasma samples. When applied to a large cohort of clinical samples (267 PD, 215 controls), we found that in contrast to CSF α-synuclein concentrations, which are consistently reported to be lower in PD patients compared to controls, the levels of plasma exosomal α-synuclein were substantially higher in PD patients, suggesting an increased efflux of the protein to the peripheral blood of these patients. Furthermore, although no association was observed between plasma exosomal and CSF α-synuclein, a significant correlation between plasma exosomal α-synuclein and disease severity (r = 0.176, p = 0.004) was observed, and the diagnostic sensitivity and specificity achieved by plasma exosomal α-synuclein were comparable to those determined by CSF α-synuclein. Further studies are clearly needed to elucidate the mechanism involved in the transport of CNS α-synuclein to the periphery, which may lead to a more convenient and robust assessment of PD clinically.

448 citations


Journal ArticleDOI
TL;DR: Analysis of cerebrospinal fluid (CSF) collected longitudinally in research participants in the Dominantly Inherited Alzheimer Network (DIAN), a multicenter, international biomarker study of ADAD, revealed reductions in amyloid-β1–42 (indicating the presence ofAmyloid plaques) and increases in markers of neuronal injury (tau, ptau181, and VILIP-1) in mutation carriers during the early presymptomatic stage.
Abstract: Clinicopathological evidence suggests that the pathology of Alzheimer's disease (AD) begins many years before the appearance of cognitive symptoms. Biomarkers are required to identify affected individuals during this asymptomatic ("preclinical") stage to permit intervention with potential disease-modifying therapies designed to preserve normal brain function. Studies of families with autosomal-dominant AD (ADAD) mutations provide a unique and powerful means to investigate AD biomarker changes during the asymptomatic period. In this biomarker study, we collected cerebrospinal fluid (CSF), plasma, and in vivo amyloid imaging cross-sectional data at baseline in individuals from ADAD families enrolled in the Dominantly Inherited Alzheimer Network. Our study revealed reduced concentrations of CSF amyloid-β1-42 (Aβ1-42) associated with the presence of Aβ plaques, and elevated concentrations of CSF tau, ptau181 (phosphorylated tau181), and VILIP-1 (visinin-like protein-1), markers of neurofibrillary tangles and neuronal injury/death, in asymptomatic mutation carriers 10 to 20 years before their estimated age at symptom onset (EAO) and before the detection of cognitive deficits. When compared longitudinally, however, the concentrations of CSF biomarkers of neuronal injury/death within individuals decreased after their EAO, suggesting a slowing of acute neurodegenerative processes with symptomatic disease progression. These results emphasize the importance of longitudinal, within-person assessment when modeling biomarker trajectories across the course of the disease. If corroborated, this pattern may influence the definition of a positive neurodegenerative biomarker outcome in clinical trials.

352 citations


Journal ArticleDOI
TL;DR: The ectodomain of KIM-1 is shed into the lumen, and serves as a urinary biomarker of kidney injury as discussed by the authors, which can be used as a blood biomarker for kidney injury.
Abstract: Currently, no blood biomarker that specifically indicates injury to the proximal tubule of the kidney has been identified. Kidney injury molecule-1 (KIM-1) is highly upregulated in proximal tubular cells following kidney injury. The ectodomain of KIM-1 is shed into the lumen, and serves as a urinary biomarker of kidney injury. We report that shed KIM-1 also serves as a blood biomarker of kidney injury. Sensitive assays to measure plasma and serum KIM-1 in mice, rats, and humans were developed and validated in the current study. Plasma KIM-1 levels increased with increasing periods of ischemia (10, 20, or 30 minutes) in mice, as early as 3 hours after reperfusion; after unilateral ureteral obstruction (day 7) in mice; and after gentamicin treatment (50 or 200 mg/kg for 10 days) in rats. In humans, plasma KIM-1 levels were higher in patients with AKI than in healthy controls or post-cardiac surgery patients without AKI (area under the curve, 0.96). In patients undergoing cardiopulmonary bypass, plasma KIM-1 levels increased within 2 days after surgery only in patients who developed AKI (P<0.01). Blood KIM-1 levels were also elevated in patients with CKD of varous etiologies. In a cohort of patients with type 1 diabetes and proteinuria, serum KIM-1 level at baseline strongly predicted rate of eGFR loss and risk of ESRD during 5-15 years of follow-up, after adjustment for baseline urinary albumin-to-creatinine ratio, eGFR, and Hb1Ac. These results identify KIM-1 as a blood biomarker that specifically reflects acute and chronic kidney injury.

329 citations


Journal ArticleDOI
TL;DR: The authors found that biomarker profiling improved prediction of the short-term risk of death from all causes above established risk factors and enhance risk prediction.
Abstract: Background Early identification of ambulatory persons at high short-term risk of death could benefit targeted prevention. To identify biomarkers for all-cause mortality and enhance risk prediction, we conducted high-throughput profiling of blood specimens in two large population-based cohorts. Methods and Findings 106 candidate biomarkers were quantified by nuclear magnetic resonance spectroscopy of non-fasting plasma samples from a random subset of the Estonian Biobank (n = 9,842; age range 18–103 y; 508 deaths during a median of 5.4 y of follow-up). Biomarkers for all-cause mortality were examined using stepwise proportional hazards models. Significant biomarkers were validated and incremental predictive utility assessed in a population-based cohort from Finland (n = 7,503; 176 deaths during 5 y of follow-up). Four circulating biomarkers predicted the risk of all-cause mortality among participants from the Estonian Biobank after adjusting for conventional risk factors: alpha-1-acid glycoprotein (hazard ratio [HR] 1.67 per 1–standard deviation increment, 95% CI 1.53–1.82, p = 5×10−31), albumin (HR 0.70, 95% CI 0.65–0.76, p = 2×10−18), very-low-density lipoprotein particle size (HR 0.69, 95% CI 0.62–0.77, p = 3×10−12), and citrate (HR 1.33, 95% CI 1.21–1.45, p = 5×10−10). All four biomarkers were predictive of cardiovascular mortality, as well as death from cancer and other nonvascular diseases. One in five participants in the Estonian Biobank cohort with a biomarker summary score within the highest percentile died during the first year of follow-up, indicating prominent systemic reflections of frailty. The biomarker associations all replicated in the Finnish validation cohort. Including the four biomarkers in a risk prediction score improved risk assessment for 5-y mortality (increase in C-statistics 0.031, p = 0.01; continuous reclassification improvement 26.3%, p = 0.001). Conclusions Biomarker associations with cardiovascular, nonvascular, and cancer mortality suggest novel systemic connectivities across seemingly disparate morbidities. The biomarker profiling improved prediction of the short-term risk of death from all causes above established risk factors. Further investigations are needed to clarify the biological mechanisms and the utility of these biomarkers for guiding screening and prevention. Please see later in the article for the Editors' Summary

291 citations


Journal ArticleDOI
15 Apr 2014-Leukemia
TL;DR: Plasma PD-L1 protein is a potent predicting biomarker in DLBCL and may indicate usefulness of alternative therapeutic strategies using PD-1 axis inhibitors and may be associated with a poorer prognosis for patients randomized within the R-CHOP arm.
Abstract: The dosage of soluble programmed cell death ligand 1 (sPD-L1) protein in the blood of adults with cancer has never been performed in a prospective patient cohort. We evaluated the clinical impact of sPD-L1 level measured at the time of diagnosis for newly diagnosed DLBCL. Soluble PD-L1 was measured in the plasma of 288 patients enrolled in a multicenter, randomized phase III trial that compared R-high-dose chemotherapy to R-CHOP. The median follow-up was 41.4 months. A cut-off of 1.52 ng/ml of PD-L1 level was determined and related to overall survival (OS). Patients with elevated sPD-L1 experienced a poorer prognosis with a three-year OS of 76% versus 89% (P<0.001). Considering clinical characteristics, the multivariate analysis retained this biomarker besides bone marrow involvement and abnormal lymphocyte-monocyte score as independently related to poor outcome. sPD-L1 was detectable in the plasma and not in the serum, found elevated in patients at diagnosis compared to healthy subjects and its level dropped back to normal value after CR. The intention-to-treat analysis showed that elevated sPD-L1 was associated with a poorer prognosis for patients randomized within the R-CHOP arm (P<0.001). Plasma PD-L1 protein is a potent predicting biomarker in DLBCL and may indicate usefulness of alternative therapeutic strategies using PD1 axis inhibitors.

282 citations


Journal ArticleDOI
TL;DR: The points addressed include: the major challenges in the development of blood‐based biomarkers of AD, including patient heterogeneity, inclusion of the “right” control population, and the blood–brain barrier; the need for standardization of preanalytical variables and analytical methodologies used by the field.
Abstract: Treatment of Alzheimer's disease (AD) is significantly hampered by the lack of easily accessible biomarkers that can detect disease presence and predict disease risk reliably. Fluid biomarkers of AD currently provide indications of disease stage; however, they are not robust predictors of disease progression or treatment response, and most are measured in cerebrospinal fluid, which limits their applicability. With these aspects in mind, the aim of this article is to underscore the concerted efforts of the Blood-Based Biomarker Interest Group, an international working group of experts in the field. The points addressed include: (1) the major challenges in the development of blood-based biomarkers of AD, including patient heterogeneity, inclusion of the "right" control population, and the blood–brain barrier; (2) the need for a clear definition of the purpose of the individual markers (e.g., prognostic, diagnostic, or monitoring therapeutic efficacy); (3) a critical evaluation of the ongoing biomarker approaches; and (4) highlighting the need for standardization of preanalytical variables and analytical methodologies used by the field.

276 citations


Journal ArticleDOI
01 Sep 2014-Brain
TL;DR: The enhanced model predicts the ordering of biomarker abnormality in sporadic Alzheimer's disease independently of clinical diagnoses or biomarker cut-points, and shows state-of-the-art diagnostic classification performance.
Abstract: We demonstrate the use of a probabilistic generative model to explore the biomarker changes occurring as Alzheimer's disease develops and progresses We enhanced the recently introduced event-based model for use with a multi-modal sporadic disease data set This allows us to determine the sequence in which Alzheimer's disease biomarkers become abnormal without reliance on a priori clinical diagnostic information or explicit biomarker cut points The model also characterizes the uncertainty in the ordering and provides a natural patient staging system Two hundred and eighty-five subjects (92 cognitively normal, 129 mild cognitive impairment, 64 Alzheimer's disease) were selected from the Alzheimer's Disease Neuroimaging Initiative with measurements of 14 Alzheimer's disease-related biomarkers including cerebrospinal fluid proteins, regional magnetic resonance imaging brain volume and rates of atrophy measures, and cognitive test scores We used the event-based model to determine the sequence of biomarker abnormality and its uncertainty in various population subgroups We used patient stages assigned by the event-based model to discriminate cognitively normal subjects from those with Alzheimer's disease, and predict conversion from mild cognitive impairment to Alzheimer's disease and cognitively normal to mild cognitive impairment The model predicts that cerebrospinal fluid levels become abnormal first, followed by rates of atrophy, then cognitive test scores, and finally regional brain volumes In amyloid-positive (cerebrospinal fluid amyloid-β1-42 < 192 pg/ml) or APOE-positive (one or more APOE4 alleles) subjects, the model predicts with high confidence that the cerebrospinal fluid biomarkers become abnormal in a distinct sequence: amyloid-β1-42, phosphorylated tau, total tau However, in the broader population total tau and phosphorylated tau are found to be earlier cerebrospinal fluid markers than amyloid-β1-42, albeit with more uncertainty The model's staging system strongly separates cognitively normal and Alzheimer's disease subjects (maximum classification accuracy of 99%), and predicts conversion from mild cognitive impairment to Alzheimer's disease (maximum balanced accuracy of 77% over 3 years), and from cognitively normal to mild cognitive impairment (maximum balanced accuracy of 76% over 5 years) By fitting Cox proportional hazards models, we find that baseline model stage is a significant risk factor for conversion from both mild cognitive impairment to Alzheimer's disease (P = 206 × 10(-7)) and cognitively normal to mild cognitive impairment (P = 0033) The data-driven model we describe supports hypothetical models of biomarker ordering in amyloid-positive and APOE-positive subjects, but suggests that biomarker ordering in the wider population may diverge from this sequence The model provides useful disease staging information across the full spectrum of disease progression, from cognitively normal to mild cognitive impairment to Alzheimer's disease This approach has broad application across neurodegenerative disease, providing insights into disease biology, as well as staging and prognostication

242 citations


Journal ArticleDOI
TL;DR: Changes in some immunological markers between baseline and the fourth ipilimumab infusion appear to be associated with disease control and survival, but verification in prospective clinical trials is required.
Abstract: Background Ipilimumab can induce durable disease control and long-term survival in patients with metastatic melanoma. Identification of a biomarker that correlates with clinical benefit and potentially provides an early marker of response is an active area of research.

227 citations


Journal ArticleDOI
TL;DR: Several studies that collectively strongly support the use of NGAL as a biomarker for the prediction of AKI are identified, however, some limitations are noted, including lack of published studies that adhere to diagnostic study guidelines, heterogeneity in AKI definition, the lack of uniformly applicable cut-off values and variability in the performance of commercially available NGAL assays.
Abstract: BackgroundThe early prediction of acute kidney injury (AKI) by current clinical and laboratory methods remains inadequate. Neutrophil gelatinase-associated lipocalin (NGAL) has emerged as a promisi...

Journal ArticleDOI
TL;DR: The notion that synaptic biomarkers may be important tools for early diagnosis, assessment of disease progression, and to monitor drug effects in treatment trials is supported.
Abstract: Synaptic degeneration is an early pathogenic event in Alzheimer’s disease, associated with cognitive impairment and disease progression. Cerebrospinal fluid biomarkers reflecting synaptic integrity would be highly valuable tools to monitor synaptic degeneration directly in patients. We previously showed that synaptic proteins such as synaptotagmin and synaptosomal-associated protein 25 (SNAP-25) could be detected in pooled samples of cerebrospinal fluid, however these assays were not sensitive enough for individual samples. We report a new strategy to study synaptic pathology by using affinity purification and mass spectrometry to measure the levels of the presynaptic protein SNAP-25 in cerebrospinal fluid. By applying this novel affinity mass spectrometry strategy on three separate cohorts of patients, the value of SNAP-25 as a cerebrospinal fluid biomarker for synaptic integrity in Alzheimer’s disease was assessed for the first time. We found significantly higher levels of cerebrospinal fluid SNAP-25 fragments in Alzheimer’s disease, even in the very early stages, in three separate cohorts. Cerebrospinal fluid SNAP-25 differentiated Alzheimer’s disease from controls with area under the curve of 0.901 (P < 0.0001). We developed a sensitive method to analyze SNAP-25 levels in individual CSF samples that to our knowledge was not possible previously. Our results support the notion that synaptic biomarkers may be important tools for early diagnosis, assessment of disease progression, and to monitor drug effects in treatment trials.

Journal ArticleDOI
TL;DR: The qRT-PCR results provide a possibility that miRNAs detected in plasma and CSF can serve as biomarkers for AD.
Abstract: The development of Alzheimer's disease (AD) biomarkers remains an unmet challenge, and new approaches that can improve current AD biomarker strategies are needed. Recent reports suggested that microRNA (miRNA) profiling of biological fluids has emerged as a diagnostic tool for several pathologic conditions. In this study, we measured six candidate miRNAs (miR-9, miR-29a, miR-29b, miR-34a, miR-125b, and miR-146a) in plasma and cerebrospinal fluid (CSF) of AD and normal subjects by using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) to evaluate their potential usability as AD biomarkers. The qRT-PCR results showed that plasma miR-34a and miR-146a levels, and CSF miR-34a, miR-125b, and miR-146a levels in AD patients were significantly lower than in control subjects. On the other hand, CSF miR-29a and miR-29b levels were significantly higher than in control subjects. Our results provide a possibility that miRNAs detected in plasma and CSF can serve as biomarkers for AD.

Journal ArticleDOI
TL;DR: The study aimed to validate previously discovered plasma biomarkers associated with AD, using a design based on imaging measures as surrogate for disease severity and assess their prognostic value in predicting conversion to dementia.
Abstract: Background The study aimed to validate previously discovered plasma biomarkers associated with AD, using a design based on imaging measures as surrogate for disease severity and assess their prognostic value in predicting conversion to dementia. Methods Three multicenter cohorts of cognitively healthy elderly, mild cognitive impairment (MCI), and AD participants with standardized clinical assessments and structural neuroimaging measures were used. Twenty-six candidate proteins were quantified in 1148 subjects using multiplex (xMAP) assays. Results Sixteen proteins correlated with disease severity and cognitive decline. Strongest associations were in the MCI group with a panel of 10 proteins predicting progression to AD (accuracy 87%, sensitivity 85%, and specificity 88%). Conclusions We have identified 10 plasma proteins strongly associated with disease severity and disease progression. Such markers may be useful for patient selection for clinical trials and assessment of patients with predisease subjective memory complaints.

Journal ArticleDOI
TL;DR: Intacellular and extracellular miRNAs related to docetaxel resistance are investigated related to castration resistant prostate cancer.
Abstract: BACKGROUND. Docetaxel-resistance limits successful treatment of castration resistant prostate cancer. We previously demonstrated that extracellular vesicles (exosomes) may play a role in regulating docetaxel resistance. Here, we investigated intracellular and extracellular (exosomal) miRNAs related to docetaxel resistance. METHODS. Following global miRNA profiling of cell line models of docetaxel-resistance and their corresponding exosomes, we investigated the clinical relevance of four selected miRNAs (miR-598, miR-34a, miR-146a, miR-148a) in four publically available clinical cohorts representing both primary and advanced disease in tissue and urine specimens. One of these miRNAs, miR-34a was selected for functional evaluation by miRNA inhibition and over-expression in vitro. We further assessed the panel of miRNAs for their combined clinical relevance as a biomarker signature by examining their common predicted targets. RESULTS. A strong correlation was found between the detection of miRNAs in exosomes and their corresponding cells of origin. Of the miRNAs chosen for further validation and clinical assessment, decreased miR-34a levels showed substantial clinical relevance and so was chosen for further analysis. Manipulating miR-34a in prostate cancer cells confirms that this miRNA regulates BCL-2 and may, in part, regulate response to docetaxel. When combined, these miRNAs are predicted to regulate a range of common mRNA targets, two of which (e.g., SNCA, SCL7A5) demonstrate a strong relationship with prostate cancer progression and poor prognosis. CONCLUSIONS. This study supports the extracellular environment as an important source of minimally invasive predictive biomarkers representing their cellular origin. Using miR-34a as example, we showed that biomarkers identified in this manner may also hold functional relevance.

Journal ArticleDOI
TL;DR: It is found that serum miR-125b may serve as a useful noninvasive biomarker for AD and was correlated with the Mini Mental State Examination in AD patients.

Journal ArticleDOI
TL;DR: Given the complexity and heterogeneous nature of RA, it is unlikely that a single cytokine may provide sufficient discrimination; therefore multiple biomarker signatures may represent more realistic approach for the future of personalised medicine in RA.
Abstract: RA is a complex disease that develops as a series of events often referred to as disease continuum. RA would benefit from novel biomarker development for diagnosis where new biomarkers are still needed (even if progresses have been made with the inclusion of ACPA into the ACR/EULAR 2010 diagnostic criteria) and for prognostic notably in at risk of evolution patients with autoantibody-positive arthralgia. Risk biomarkers for rapid evolution or cardiovascular complications are also highly desirable. Monitoring biomarkers would be useful in predicting relapse. Finally, predictive biomarkers for therapy outcome would allow tailoring therapy to the individual. Increasing numbers of cytokines have been involved in RA pathology. Many have the potential as biomarkers in RA especially as their clinical utility is already established in other diseases and could be easily transferable to rheumatology. We will review the current knowledge’s relation to cytokine used as biomarker in RA. However, given the complexity and heterogeneous nature of RA, it is unlikely that a single cytokine may provide sufficient discrimination; therefore multiple biomarker signatures may represent more realistic approach for the future of personalised medicine in RA.

Journal ArticleDOI
TL;DR: The AD-1 assay offers another test with high sensitivity and specificity for diagnosing a PJI especially in the case where the diagnosis of PJI is uncertain, but larger studies are needed to determine significance and cost effectiveness.
Abstract: Background Diagnosing a periprosthetic joint infection (PJI) requires a complex approach using various laboratory and clinical criteria. A novel approach to diagnosing these infections uses synovial fluid biomarkers. Alpha defensin-1 (AD-1) is one such synovial-fluid biomarker. However little is known about the performance of the AD-1 assay in the diagnosis of PJI.

Journal ArticleDOI
TL;DR: Six serum miRNAs are identified that distinguish AD patients from healthy controls with high sensitivity and specificity and may serve as a novel, noninvasive biomarker for AD.
Abstract: Recent findings that human serum contains stably expressed microRNAs (miRNAs) have revealed a great potential of serum miRNA signature as disease fingerprints to diagnosis. Here we used genome-wide serum miRNA expression analysis to investigate the value of serum miRNAs as biomarkers for the diagnosis of Alzheimer's disease (AD). Illumina HiSeq 2000 sequencing followed by individual quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assays was used to test the difference in levels of serum miRNAs between 50 AD patients and 50 controls in the screening stages. The detected serum miRNAs then were validated by qRT-PCR in 158 patients and 155 controls. MiR-98-5p, miR-885-5p, miR-483-3p, miR-342-3p, miR-191-5p, and miR-let-7d-5p displayed significantly different expression levels in AD patients compared with controls. Among the 6 miRNAs, miR-342-3p has the best sensitivity (81.5%) and specificity (70.1%) and was correlated to Mini-Mental State Examination score. This study identified six serum miRNAs that distinguish AD patients from healthy controls with high sensitivity and specificity. Serum miRNA panel (or miR-342-3p alone) may serve as a novel, noninvasive biomarker for AD.

Journal ArticleDOI
TL;DR: The finding that only the anti-inflammatory cytokine IL-10 responded to treatment in parallel with symptom improvement suggests that this could be used as a potential treatment response biomarker in future studies of schizophrenia.

Journal ArticleDOI
TL;DR: Cerebrospinal fluid biomarkers β‐amyloid 1‐42 (Aβ1‐42) have proven diagnostic accuracy for mild cognitive impairment and Alzheimer's disease (AD).
Abstract: Background Cerebrospinal fluid (CSF) biomarkers β-amyloid 1-42 (Aβ 1-42 ), also expressed as Aβ 1-42 :Aβ 1-40 ratio, T-tau, and P-tau 181P , have proven diagnostic accuracy for mild cognitive impairment and Alzheimer's disease (AD). How to use, interpret, and disclose biomarker results drives the need for standardization. Methods Previous Alzheimer's Biomarkers Standardization Initiative meetings discussed preanalytical issues affecting Aβ 1-42 and tau in CSF. This second round of consensus meetings focused on issues related to clinical use of AD CSF biomarkers. Results Consensus was reached that lumbar puncture for AD CSF biomarker analysis be considered as a routine clinical test in patients with early-onset dementia, at the prodromal stage or with atypical AD. Moreover, consensus was reached on which biomarkers to use, how results should be interpreted, and potential confounding factors. Conclusions Changes in Aβ 1-42 , T-tau, and P-tau 181P allow diagnosis of AD in its prodromal stage. Conversely, having all three biomarkers in the normal range rules out AD. Intermediate conditions require further patient follow-up.

Journal ArticleDOI
T B Hao1, Wei Shi1, Xianjuan Shen1, Jing Qi1, Xinhua Wu1, Y Wu1, Y Y Tang1, Shaoqing Ju1 
TL;DR: Combined detection of ALU115, ALU247/115 and CEA could improve the diagnostic efficiency for CRC and be valuable in early complementary diagnosis and monitoring of progression and prognosis of CRC.
Abstract: Circulating cell-free DNA in serum as a biomarker for diagnosis and prognostic prediction of colorectal cancer

Journal ArticleDOI
TL;DR: An approach to biomarker validation and qualification for OA clinical trials that has recently commenced with the Foundation of NIH OA Biomarkers Consortium study cosponsored by the Osteoarthritis Research Society International (OARSI).
Abstract: Historically disease knowledge development and treatment innovation in osteoarthritis (OA) has been considered to be slow One of the many reasons purported as responsible for this slow pace has been the alleged lack of valid and responsive biomarkers to ascertain efficacy, which itself has been dependent upon the slow evolution of the understanding of the complex nature of joint tissue biology This narrative review outlines the rationale for why we need OA biomarkers with regard to biomarker validation and qualification The main biomarkers in current development for OA are biochemical and imaging markers We describe an approach to biomarker validation and qualification for OA clinical trials that has recently commenced with the Foundation of NIH OA Biomarkers Consortium study cosponsored by the Osteoarthritis Research Society International (OARSI) With this approach we endeavor to identify, develop, and qualify biological markers (biomarkers) to support new drug development, preventive medicine, and medical diagnostics for osteoarthritis

Journal ArticleDOI
TL;DR: Though still a research tool, ASL imaging is a promising non-invasive and reliable method with the potential to serve as a future clinical tool for the measurement of CBF in preclinical AD.
Abstract: There is growing recognition that cerebral hypoperfusion is related to the pathogenesis of Alzheimer's disease (AD), implicating the measurement of cerebral blood flow (CBF) as a possible biomarker of AD. The ability to identify the earliest and most reliable markers of incipient cognitive decline and clinical symptoms is critical to develop effective preventive strategies and interventions for AD. Arterial spin labeling (ASL) magnetic resonance imaging (MRI) measures CBF by magnetically labeling arterial water and using it as an endogenous tracer. Studies using ASL MRI in humans indicate that CBF changes are present several years before the development of the clinical symptoms of AD. Moreover, ASL-measured CBF has been shown to distinguish between cognitively normal individuals, adults at risk for AD, and persons diagnosed with AD. Some studies indicate that CBF may even be sensitive for predicting cognitive decline and conversion to mild cognitive impairment and AD over time. Taken together, evidence suggests that the current staging models of AD biomarker pathology should incorporate early changes in CBF as a useful biomarker, possibly present even earlier than amyloid-β accumulation. Though still a research tool, ASL imaging is a promising non-invasive and reliable method with the potential to serve as a future clinical tool for the measurement of CBF in preclinical AD.

Journal ArticleDOI
TL;DR: This review article discusses the opportunities and challenges of MR studies for CAD, highlighting several examples that involved multiple biomarkers, including various lipid and inflammation traits as well as hypertension, diabetes mellitus, and obesity.
Abstract: Epidemiological research over the last 50 years has discovered a plethora of biomarkers (including molecules, traits or other diseases) that associate with coronary artery disease (CAD) risk. Even the strongest association detected in such observational research precludes drawing conclusions about the causality underlying the relationship between biomarker and disease. Mendelian randomization (MR) studies can shed light on the causality of associations, i.e whether, on the one hand, the biomarker contributes to the development of disease or, on the other hand, the observed association is confounded by unrecognized exogenous factors or due to reverse causation, i.e. due to the fact that prevalent disease affects the level of the biomarker. However, conclusions from a MR study are based on a number of important assumptions. A prerequisite for such studies is that the genetic variant employed affects significantly the biomarker under investigation but has no effect on other phenotypes that might confound the association between the biomarker and disease. If this biomarker is a true causal risk factor for CAD, genotypes of the variant should associate with CAD risk in the direction predicted by the association of the biomarker with CAD. Given a random distribution of exogenous factors in individuals carrying respective genotypes, groups represented by the genotypes are highly similar except for the biomarker of interest. Thus, the genetic variant converts into an unconfounded surrogate of the respective biomarker. This scenario is nicely exemplified for LDL cholesterol. Almost every genotype found to increase LDL cholesterol level by a sufficient amount has also been found to increase CAD risk. Pending a number of conditions that needed to be fulfilled by the genetic variant under investigation (e.g. no pleiotropic effects) and the experimental set-up of the study, LDL cholesterol can be assumed to act as the functional component that links genotypes and CAD risk and, more importantly, it can be assumed that any modulation of LDL cholesterol-by whatever mechanism-would have similar effects on disease risk. Therefore, MR analysis has tremendous potential for identifying therapeutic targets that are likely to be causal for CAD. This review article discusses the opportunities and challenges of MR studies for CAD, highlighting several examples that involved multiple biomarkers, including various lipid and inflammation traits as well as hypertension, diabetes mellitus, and obesity.

Journal ArticleDOI
TL;DR: It is demonstrated that the alarmin S100A8/S100A9 serves as a sensitive local and systemic marker for the detection of even sub-clinical disease activity in inflammatory and immunological processes like irritative and allergic contact dermatitis.
Abstract: Inflammation has a key role in the pathogenesis of various human diseases. The early detection, localization and monitoring of inflammation are crucial for tailoring individual therapies. However, reliable biomarkers to detect local inflammatory activities and to predict disease outcome are still missing. Alarmins, which are locally released during cellular stress, are early amplifiers of inflammation. Here, using optical molecular imaging, we demonstrate that the alarmin S100A8/S100A9 serves as a sensitive local and systemic marker for the detection of even sub-clinical disease activity in inflammatory and immunological processes like irritative and allergic contact dermatitis. In a model of collagen-induced arthritis, we use S100A8/S100A9 imaging to predict the development of disease activity. Furthermore, S100A8/S100A9 can act as a very early and sensitive biomarker in experimental leishmaniasis for phagocyte activation linked to an effective Th1-response. In conclusion, the alarmin S100A8/S100A9 is a valuable and sensitive molecular target for novel imaging approaches to monitor clinically relevant inflammatory disorders on a molecular level.

Journal ArticleDOI
20 Feb 2014-PLOS ONE
TL;DR: It is concluded that miR-206 is elevated in the circulation of symptomatic SOD1-G93A mice and possibly in human ALS patients, and is a promising candidate biomarker for this motor neuron disease.
Abstract: Amyotrophic lateral sclerosis (ALS) is a lethal motor neuron disease that progressively debilitates neuronal cells that control voluntary muscle activity. Biomarkers are urgently needed to facilitate ALS diagnosis and prognosis, and as indicators of therapeutic response in clinical trials. microRNAs (miRNAs), small posttranscriptional modifiers of gene expression, are frequently altered in disease conditions. Besides their important regulatory role in variety of biological processes, miRNAs can also be released into the circulation by pathologically affected tissues and display remarkable stability in body fluids. In a mouse model of ALS that expresses mutated human superoxide dismutase 1 (SOD1-G93A) skeletal muscle is one of the tissues affected early by mutant SOD1 toxicity. To find biomarkers for ALS, we studied miRNA alterations from skeletal muscle and plasma of SOD1-G93A mice, and subsequently tested the levels of the affected miRNAs in the serum from human ALS patients. Fast-twitch and slow-twitch muscles from symptomatic SOD1-G93A mice (age 90 days) and their control littermates were first studied using miRNA microarrays and then evaluated with quantitative PCR from five age groups from neonatal to the terminal disease stage (10–120 days). Among those miRNA changed in various age/gender/muscle groups (miR-206, -1, -133a, -133b, -145, -21, -24), miR-206 was the only one consistently altered during the course of the disease pathology. In both sexes, mature miR-206 was increased in fast-twitch muscles preferably affected in the SOD1-G93A model, with highest expression towards the most severely affected animals. Importantly, miR-206 was also increased in the circulation of symptomatic animals and in a group of 12 definite ALS patients tested. We conclude that miR-206 is elevated in the circulation of symptomatic SOD1-G93A mice and possibly in human ALS patients. Although larger scale studies on ALS patients are warranted, miR-206 is a promising candidate biomarker for this motor neuron disease.

Journal ArticleDOI
TL;DR: The relevant research in PSMA is reviewed on the 20th anniversary of its cloning to determine its precise role in prostate carcinogenesis and within the therapeutic armamentarium for patients with prostate cancer remains encouraging.
Abstract: Objective Despite a multitude of detection and treatment advances in the past 2 decades, prostate cancer remains the second leading cause of deaths due to cancer among men in the United States. Technological evolution and expanding knowledge of tumor biomarkers have invigorated exploration in prostate cancer therapeutics. Prostate-specific membrane antigen (PSMA) was one of the first prostate cancer biomarkers successfully cloned. Since then, it has been characterized as the prototypical cell-surface marker for prostate cancer and has been the subject of intense clinical inquiry. In this article, we review the relevant research in PSMA on the 20th anniversary of its cloning. Methods and materials A PubMed search using the keywords “prostate-specific membrane antigen” or “glutamate carboxypeptidase II” provided 1019 results. An additional 3 abstracts were included from scientific meetings. Articles were vetted by title and abstract with emphasis placed on those with clinically relevant findings. Results Sixty articles were selected for inclusion. PSMA was discovered and cloned in 1993. Its structure and function were further delineated in the ensuing decade. Consensus sites of expression in normal physiology are prostate, kidney, nervous system, and small intestine. PSMA has been implicated in the neovasculature of several tumors including urothelial and renal cell carcinomas. In prostate cancer, expression of PSMA is directly related to the Gleason grade. PSMA has been tested both in imaging and therapeutics in a number of prostate cancer clinical trials. Several recent approaches to target PSMA include the use of small molecule inhibitors, PSMA-based immunotherapy, RNA aptamer conjugates, and PSMA-targeted prodrug therapy. Future study of PSMA in prostate cancer might focus on its intracellular functions and possible role in tumor neurogenesis. Conclusions Twenty years from its discovery, PSMA represents a viable biomarker and treatment target in prostate cancer. Research to delineate its precise role in prostate carcinogenesis and within the therapeutic armamentarium for patients with prostate cancer remains encouraging.

Journal ArticleDOI
07 Apr 2014-PLOS ONE
TL;DR: Risk score analysis demonstrated that the six-miRNA-based biomarker signature had high sensitivity and specificity for distinguishing the CRC samples from cancer-free controls, and can be used as a noninvasive biomarker for the diagnosis of CRC.
Abstract: Prognosis of patients with colorectal cancer (CRC) is generally poor because of the lack of simple, convenient, and noninvasive tools for CRC detection at the early stage. The discovery of microRNAs (miRNAs) and their different expression profiles among different kinds of diseases has opened a new avenue for tumor diagnosis. We built a serum microRNA expression profile signature and tested its specificity and sensitivity as a biomarker in the diagnosis of CRC. We also studied its possible role in monitoring the progression of CRC. We conducted a two phase case-control test to identify serum miRNAs as biomarkers for CRC diagnosis. Using quantitative reverse transcription polymerase chain reactions, we tested ten candidate miRNAs in a training set (30 CRCs vs 30 controls). Risk score analysis was used to evaluate the diagnostic value of the serum miRNA profiling system. Other independent samples, including 83 CRCs and 59 controls, were used to validate the diagnostic model. In the training set, six serum miRNAs (miR-21, let-7g, miR-31, miR-92a, miR-181b, and miR-203) had significantly different expression levels between the CRCs and healthy controls. Risk score analysis demonstrated that the six-miRNA-based biomarker signature had high sensitivity and specificity for distinguishing the CRC samples from cancer-free controls. The areas under the receiver operating characteristic (ROC) curve of the six-miRNA signature profiles were 0.900 and 0.923 for the two sets of serum samples, respectively. However, for the same serum samples, the areas under the ROC curve used by the tumor markers carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) were only 0.649 and 0.598, respectively. The expression levels of the six serum miRNAs were also correlated with CRC progression. Thus, the identified six-miRNA signature can be used as a noninvasive biomarker for the diagnosis of CRC, with relatively high sensitivity and specificity.

Journal ArticleDOI
TL;DR: Analysis of three independent data sets of post-mortem brains revealed signs of increased methylation in one particular gene, SKA2, a finding that was extended to peripheral blood samples from other cohorts of prospectively followed individuals.
Abstract: Considerable research suggests that suicide involves effects of genes, the environment, and their interaction. Analysis of three independent data sets of post-mortem brains revealed signs of increased methylation in one particular gene, SKA2, a finding that was extended to peripheral blood samples from other cohorts of prospectively followed individuals.