scispace - formally typeset
Search or ask a question

Showing papers on "Receptor tyrosine kinase published in 2021"


Journal ArticleDOI
04 Mar 2021-Cell
TL;DR: In this paper, the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol.

232 citations


Journal ArticleDOI
TL;DR: The non-malignant and malignant biology of ROS1, the diagnostic challenges that ROS1 fusions present and the strategies to target ROS1 fusion proteins in both treatment-naive and acquired-resistance settings are discussed.
Abstract: The proto-oncogene ROS1 encodes a receptor tyrosine kinase with an unknown physiological role in humans. Somatic chromosomal fusions involving ROS1 produce chimeric oncoproteins that drive a diverse range of cancers in adult and paediatric patients. ROS1-directed tyrosine kinase inhibitors (TKIs) are therapeutically active against these cancers, although only early-generation multikinase inhibitors have been granted regulatory approval, specifically for the treatment of ROS1 fusion-positive non-small-cell lung cancers; histology-agnostic approvals have yet to be granted. Intrinsic or extrinsic mechanisms of resistance to ROS1 TKIs can emerge in patients. Potential factors that influence resistance acquisition include the subcellular localization of the particular ROS1 oncoprotein and the TKI properties such as the preferential kinase conformation engaged and the spectrum of targets beyond ROS1. Importantly, the polyclonal nature of resistance remains underexplored. Higher-affinity next-generation ROS1 TKIs developed to have improved intracranial activity and to mitigate ROS1-intrinsic resistance mechanisms have demonstrated clinical efficacy in these regards, thus highlighting the utility of sequential ROS1 TKI therapy. Selective ROS1 inhibitors have yet to be developed, and thus the specific adverse effects of ROS1 inhibition cannot be deconvoluted from the toxicity profiles of the available multikinase inhibitors. Herein, we discuss the non-malignant and malignant biology of ROS1, the diagnostic challenges that ROS1 fusions present and the strategies to target ROS1 fusion proteins in both treatment-naive and acquired-resistance settings.

111 citations


Journal ArticleDOI
TL;DR: The role of MEK and ERK in MAPK signaling is described and the current understanding of their interaction and activation mechanisms are summarized to guide future research endeavors and aid in the development of alternative therapeutic strategies to combat surmounting drug resistance in treating MAPK-mediated cancers.
Abstract: The RAS-RAF-MEK-ERK pathway is the most well-studied of the MAPK cascades and is critical for cell proliferation, differentiation, and survival. Abnormalities in regulation resulting from mutations in components of this pathway, particularly in upstream proteins, RAS and RAF, are responsible for a significant fraction of human cancers and nearly all cutaneous melanomas. Activation of receptor tyrosine kinases by growth factors and various extracellular signals leads to the sequential activation of RAS, RAF, MEK, and finally ERK, which activates numerous transcription factors and facilitates oncogenesis in the case of aberrant pathway activation. While extensive studies have worked to elucidate the activation mechanisms and structural components of upstream MAPK components, comparatively less attention has been directed toward the kinases, MEK and ERK, due to the infrequency of oncogenic-activating mutations in these kinases. However, acquired drug resistance has become a major issue in the treatment of RAS- and RAF-mutated cancers. Targeting the terminal kinases in the MAPK cascade has shown promise for overcoming many of these resistance mechanisms and improving treatment options for patients with MAPK-aberrant cancers. Here, we will describe the role of MEK and ERK in MAPK signaling and summarize the current understanding of their interaction and activation mechanisms. We will also discuss existing approaches for targeting MEK and ERK, and the benefits of alternative strategies. Areas requiring further exploration will be highlighted to guide future research endeavors and aid in the development of alternative therapeutic strategies to combat surmounting drug resistance in treating MAPK-mediated cancers. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/3/361/F1.large.jpg.

74 citations


Journal ArticleDOI
TL;DR: The findings suggest TNO155 is an effective agent for blocking both tumor-promoting and immune-suppressive RTK signaling in RTK- and MAPK-driven cancers and their tumor microenvironment.
Abstract: Purpose: SHP2 inhibitors offer an appealing and novel approach to inhibit receptor tyrosine kinase (RTK) signaling, which is the oncogenic driver in many tumors or is frequently feedback activated in response to targeted therapies including RTK inhibitors and MAPK inhibitors. We seek to evaluate the efficacy and synergistic mechanisms of combinations with a novel SHP2 inhibitor, TNO155, to inform their clinical development. Experimental Design: The combinations of TNO155 with EGFR inhibitors (EGFRi), BRAFi, KRASG12Ci, CDK4/6i, and anti–programmed cell death-1 (PD-1) antibody were tested in appropriate cancer models in vitro and in vivo, and their effects on downstream signaling were examined. Results: In EGFR-mutant lung cancer models, combination benefit of TNO155 and the EGFRi nazartinib was observed, coincident with sustained ERK inhibition. In BRAFV600E colorectal cancer models, TNO155 synergized with BRAF plus MEK inhibitors by blocking ERK feedback activation by different RTKs. In KRASG12C cancer cells, TNO155 effectively blocked the feedback activation of wild-type KRAS or other RAS isoforms induced by KRASG12Ci and greatly enhanced efficacy. In addition, TNO155 and the CDK4/6 inhibitor ribociclib showed combination benefit in a large panel of lung and colorectal cancer patient–derived xenografts, including those with KRAS mutations. Finally, TNO155 effectively inhibited RAS activation by colony-stimulating factor 1 receptor, which is critical for the maturation of immunosuppressive tumor-associated macrophages, and showed combination activity with anti–PD-1 antibody. Conclusions: Our findings suggest TNO155 is an effective agent for blocking both tumor-promoting and immune-suppressive RTK signaling in RTK- and MAPK-driven cancers and their tumor microenvironment. Our data provide the rationale for evaluating these combinations clinically.

70 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used single-cell RNA sequencing to demonstrate the existence of multiple cancer cell subpopulations within cell lines, xenograft tumors and patient tumors, which exhibit epigenetic changes and differential therapeutic sensitivity.
Abstract: Tyrosine kinase inhibitors were found to be clinically effective for treatment of patients with certain subsets of cancers carrying somatic mutations in receptor tyrosine kinases. However, the duration of clinical response is often limited, and patients ultimately develop drug resistance. Here, we use single-cell RNA sequencing to demonstrate the existence of multiple cancer cell subpopulations within cell lines, xenograft tumors and patient tumors. These subpopulations exhibit epigenetic changes and differential therapeutic sensitivity. Recurrently overrepresented ontologies in genes that are differentially expressed between drug tolerant cell populations and drug sensitive cells include epithelial-to-mesenchymal transition, epithelium development, vesicle mediated transport, drug metabolism and cholesterol homeostasis. We show analysis of identified markers using the LINCS database to predict and functionally validate small molecules that target selected drug tolerant cell populations. In combination with EGFR inhibitors, crizotinib inhibits the emergence of a defined subset of EGFR inhibitor-tolerant clones. In this study, we describe the spectrum of changes associated with drug tolerance and inhibition of specific tolerant cell subpopulations with combination agents.

70 citations


Journal ArticleDOI
13 May 2021-Cell
TL;DR: In this paper, a membraneless, protein granule-based subcellular structure that can organize RTK/RAS/MAPK signaling in cancer was uncovered, and the structure was used for organizing oncogenic RTK and RAS signaling.

69 citations


Journal ArticleDOI
TL;DR: The first generation of allosteric SHP2 inhibitors is under clinical evaluation to determine safety, appropriate tolerability management, and antitumor efficacy, investigations that will dictate future clinical applications.

66 citations


Journal ArticleDOI
Tingting Jiang1, Guan Wang1, Yao Liu1, Lu Feng1, Meng Wang1, Jie Liu1, Yi Chen1, Liang Ouyang1 
TL;DR: The biological functions of TRKs and NTRK fusion proteins, the development of small-molecule TRK inhibitors with different chemotypes and their activity and selectivity, and the potential therapeutic applications of these inhibitors for future cancer drug discovery efforts are summarized.

57 citations


Journal ArticleDOI
TL;DR: A review of the current landscape of driver mutation in non-small-cell lung cancer can be found in this paper, where the authors provide an update on the current standards of treatment as well as promising future strategies.
Abstract: Lung cancer, of which non-small lung cancer is the most common subtype, represents the leading cause of cancer related-death worldwide. It is now recognized that a significant proportion of these patients present alterations in certain genes that drive oncogenesis. In recent years, more of these so-called oncogenic drivers have been identified, and a better understanding of their biology has allowed the development new targeted agents. This review aims to provide an update about the current landscape of driver mutation in non-small-cell lung cancer. Alterations in Kirsten rat sarcoma, epidermal growth factor receptor, MET, anaplastic lymphoma kinase, c-ROS oncogene 1, v-raf murine sarcoma viral oncogene homolog B, neurotrophic receptor tyrosine kinase, human epidermal growth factor 2, neuregulin-1 and rearranged during transfection are discussed, as well as agents targeting these alterations. Current standards of treatment as well as promising future strategies are presented. Currently, more than fifteen targeted agents are food and Drug administration-approved for seven oncogenic drivers in non-small-cell lung cancer, highlighting the importance of actively searching for these mutations. Continuous and future efforts made in defining the biology of each of these alterations will help to elucidate their respective resistance mechanisms, and to define the best treatment strategy and therapeutic sequence.

53 citations


Journal ArticleDOI
01 Jun 2021-Oncogene
TL;DR: In this article, the authors proposed a method for the identification of diverse types of tyrosine kinase inhibitors, targeting both the receptors themselves as well as key cellular factors that play important roles in the RTK signaling cascade.
Abstract: Receptor tyrosine kinases (RTKs) are transmembrane receptors of great clinical interest due to their role in disease, notably cancer. Since their discovery, several mechanisms of RTK dysregulation have been identified, resulting in multiple cancer types displaying 'oncogenic addiction' to RTKs. As a result, RTKs have represented a major class for targeted therapeutics over the past two decades, with numerous small molecule-based tyrosine kinase inhibitor (TKI) therapeutics having been developed and clinically approved for several cancers. However, many of the current RTK inhibitor treatments eventually result in the rapid development of acquired resistance and subsequent tumor relapse. Recent technological advances and tools are being generated for the identification of novel RTK small molecule therapeutics. These newer technologies will be important for the identification of diverse types of RTK inhibitors, targeting both the receptors themselves as well as key cellular factors that play important roles in the RTK signaling cascade.

50 citations


Journal ArticleDOI
TL;DR: The insertion mutations in Erb-b2 receptor tyrosine kinase 2 gene (ERBB2 or HER2) exon 20 occur in 2%-5% of non-small-cell lung cancers (NSCLCs) and function as an oncogenic driver.
Abstract: PURPOSEInsertion mutations in Erb-b2 receptor tyrosine kinase 2 gene (ERBB2 or HER2) exon 20 occur in 2%-5% of non–small-cell lung cancers (NSCLCs) and function as an oncogenic driver. Poziotinib, ...


Journal ArticleDOI
26 Nov 2021-Cells
TL;DR: In this paper, a review of the role of growth factor-initiated signaling pathways activated by growth factors and their receptor (mostly receptor tyrosine kinases) in regulating cell cycle progression through various phases.
Abstract: The cell cycle is the series of events that take place in a cell, which drives it to divide and produce two new daughter cells. The typical cell cycle in eukaryotes is composed of the following phases: G1, S, G2, and M phase. Cell cycle progression is mediated by cyclin-dependent kinases (Cdks) and their regulatory cyclin subunits. However, the driving force of cell cycle progression is growth factor-initiated signaling pathways that control the activity of various Cdk–cyclin complexes. While the mechanism underlying the role of growth factor signaling in G1 phase of cell cycle progression has been largely revealed due to early extensive research, little is known regarding the function and mechanism of growth factor signaling in regulating other phases of the cell cycle, including S, G2, and M phase. In this review, we briefly discuss the process of cell cycle progression through various phases, and we focus on the role of signaling pathways activated by growth factors and their receptor (mostly receptor tyrosine kinases) in regulating cell cycle progression through various phases.

Journal ArticleDOI
18 Feb 2021-Oncogene
TL;DR: In this paper, the authors showed that EMT regulators, TWIST and SNAIL, significantly induce DDR2 expression and sensitize ferroptosis in a DDR2-dependent manner.
Abstract: Recurrent breast cancer presents significant challenges with aggressive phenotypes and treatment resistance. Therefore, novel therapeutics are urgently needed. Here, we report that murine recurrent breast tumor cells, when compared with primary tumor cells, are highly sensitive to ferroptosis. Discoidin Domain Receptor Tyrosine Kinase 2 (DDR2), the receptor for collagen I, is highly expressed in ferroptosis-sensitive recurrent tumor cells and human mesenchymal breast cancer cells. EMT regulators, TWIST and SNAIL, significantly induce DDR2 expression and sensitize ferroptosis in a DDR2-dependent manner. Erastin treatment induces DDR2 upregulation and phosphorylation, independent of collagen I. Furthermore, DDR2 knockdown in recurrent tumor cells reduces clonogenic proliferation. Importantly, both the ferroptosis protection and reduced clonogenic growth may be compatible with the compromised YAP/TAZ upon DDR2 inhibition. Collectively, these findings identify the important role of EMT-driven DDR2 upregulation in recurrent tumors in maintaining growth advantage but activating YAP/TAZ-mediated ferroptosis susceptibility, providing potential strategies to eradicate recurrent breast cancer cells with mesenchymal features.

Journal ArticleDOI
TL;DR: The linkage between autophagy and several recurrent genetic abnormalities in AML is summarized, highlighting the potential of capitalizing on autophileagy modulation in targeted therapy for AML.
Abstract: Although molecular targeted therapies have recently displayed therapeutic effects in acute myeloid leukemia (AML), limited response and acquired resistance remain common problems. Numerous studies have associated autophagy, an essential degradation process involved in the cellular response to stress, with the development and therapeutic response of cancers including AML. Thus, we review studies on the role of autophagy in AML development and summarize the linkage between autophagy and several recurrent genetic abnormalities in AML, highlighting the potential of capitalizing on autophagy modulation in targeted therapy for AML.Abbreviations: AML: acute myeloid leukemia; AMPK: AMP-activated protein kinase; APL: acute promyelocytic leukemia; ATG: autophagy related; ATM: ATM serine/threonine kinase; ATO: arsenic trioxide; ATRA: all trans retinoic acid; BCL2: BCL2 apoptosis regulator; BECN1: beclin 1; BET proteins, bromodomain and extra-terminal domain family; CMA: chaperone-mediated autophagy; CQ: chloroquine; DNMT, DNA methyltransferase; DOT1L: DOT1 like histone lysine methyltransferase; FLT3: fms related receptor tyrosine kinase 3; FIS1: fission, mitochondrial 1; HCQ: hydroxychloroquine; HSC: hematopoietic stem cell; IDH: isocitrate dehydrogenase; ITD: internal tandem duplication; KMT2A/MLL: lysine methyltransferase 2A; LSC: leukemia stem cell; MDS: myelodysplastic syndromes; MTORC1: mechanistic target of rapamycin kinase complex 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NPM1: nucleophosmin 1; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PML: PML nuclear body scaffold; ROS: reactive oxygen species; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SAHA: vorinostat; SQSTM1: sequestosome 1; TET2: tet methylcytosine dioxygenase 2; TKD: tyrosine kinase domain; TKI: tyrosine kinase inhibitor; TP53/p53: tumor protein p53; ULK1: unc-51 like autophagy activating kinase 1; VPA: valproic acid; WDFY3/ALFY: WD repeat and FYVE domain containing 3.

Journal ArticleDOI
TL;DR: In this paper, the authors identified that Dovitinib, a receptor tyrosine kinase (RTK) inhibitor, binds the precursor to microRNA-21 (pre-miR-21), and used it as an RNA recognition element in a chimeric compound that also recruits RNase L to induce the RNA's catalytic degradation.
Abstract: Reprogramming known medicines for a novel target with activity and selectivity over the canonical target is challenging. By studying the binding interactions between RNA folds and known small-molecule medicines and mining the resultant dataset across human RNAs, we identified that Dovitinib, a receptor tyrosine kinase (RTK) inhibitor, binds the precursor to microRNA-21 (pre-miR-21). Dovitinib was rationally reprogrammed for pre-miR-21 by using it as an RNA recognition element in a chimeric compound that also recruits RNase L to induce the RNA's catalytic degradation. By enhancing the inherent RNA-targeting activity and decreasing potency against canonical RTK protein targets in cells, the chimera shifted selectivity for pre-miR-21 by 2500-fold, alleviating disease progression in mouse models of triple-negative breast cancer and Alport Syndrome, both caused by miR-21 overexpression. Thus, targeted degradation can dramatically improve selectivity even across different biomolecules, i.e., protein versus RNA.

Journal ArticleDOI
TL;DR: Intricate relationships between endocytosis and cellular signaling, first recognized nearly 40 years ago through the study of tyrosine kinase growth factor receptors, are now known to exist for mul...
Abstract: Intricate relationships between endocytosis and cellular signaling, first recognized nearly 40 years ago through the study of tyrosine kinase growth factor receptors, are now known to exist for mul...

Journal ArticleDOI
TL;DR: A review of the rapidly expanding knowledge in this field can be found in this article, where the authors discuss the preclinical validation of tyrosine kinase inhibitors targeting PDGF receptors, such as imatinib, as a treatment for some of these conditions.
Abstract: PDGFRA and PDGFRB are classical proto-oncogenes that encode receptor tyrosine kinases responding to platelet-derived growth factor (PDGF). PDGFRA mutations are found in gastrointestinal stromal tumors (GISTs), inflammatory fibroid polyps and gliomas, and PDGFRB mutations drive myofibroma development. In addition, chromosomal rearrangement of either gene causes myeloid neoplasms associated with hypereosinophilia. Recently, mutations in PDGFRB were linked to several noncancerous diseases. Germline heterozygous variants that reduce receptor activity have been identified in primary familial brain calcification, whereas gain-of-function mutants are present in patients with fusiform aneurysms, Kosaki overgrowth syndrome or Penttinen premature aging syndrome. Functional analysis of these variants has led to the preclinical validation of tyrosine kinase inhibitors targeting PDGF receptors, such as imatinib, as a treatment for some of these conditions. This review summarizes the rapidly expanding knowledge in this field.

Journal ArticleDOI
TL;DR: In this article, a review of the promising pharmaceutical targets, as well as the existing modulatory strategies of TAMs were summarized, including the chemokine-chemokine receptor signaling, tyrosine kinase receptor signalling, metabolic signaling, and exosomal signaling.
Abstract: As one of the most abundant immune cell populations in the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play important roles in multiple solid malignancies, including breast cancer, prostate cancer, liver cancer, lung cancer, ovarian cancer, gastric cancer, pancreatic cancer, and colorectal cancer. TAMs could contribute to carcinogenesis, neoangiogenesis, immune-suppressive TME remodeling, cancer chemoresistance, recurrence, and metastasis. Therefore, reprogramming of the immune-suppressive TAMs by pharmacological approaches has attracted considerable research attention in recent years. In this review, the promising pharmaceutical targets, as well as the existing modulatory strategies of TAMs were summarized. The chemokine-chemokine receptor signaling, tyrosine kinase receptor signaling, metabolic signaling, and exosomal signaling have been highlighted in determining the biological functions of TAMs. Besides, both preclinical research and clinical trials have suggested the chemokine-chemokine receptor blockers, tyrosine kinase inhibitors, bisphosphonates, as well as the exosomal or nanoparticle-based targeting delivery systems as the promising pharmacological approaches for TAMs deletion or reprogramming. Lastly, the combined therapies of TAMs-targeting strategies with traditional treatments or immunotherapies as well as the exosome-like nanovesicles for cancer therapy are prospected.

Journal ArticleDOI
TL;DR: In this article, the structure of the c-MET/HGF complex has been investigated and it was shown that one HGF molecule is sufficient to induce a specific dimerization mode for receptor activation.
Abstract: The c-MET receptor is a receptor tyrosine kinase (RTK) that plays essential roles in normal cell development and motility. Aberrant activation of c-MET can lead to both tumors growth and metastatic progression of cancer cells. C-MET can be activated by either hepatocyte growth factor (HGF), or its natural isoform NK1. Here, we report the cryo-EM structures of c-MET/HGF and c-MET/NK1 complexes in the active state. The c-MET/HGF complex structure reveals that, by utilizing two distinct interfaces, one HGF molecule is sufficient to induce a specific dimerization mode of c-MET for receptor activation. The binding of heparin as well as a second HGF to the 2:1 c-MET:HGF complex further stabilize this active conformation. Distinct to HGF, NK1 forms a stable dimer, and bridges two c-METs in a symmetrical manner for activation. Collectively, our studies provide structural insights into the activation mechanisms of c-MET, and reveal how two isoforms of the same ligand use dramatically different mechanisms to activate the receptor.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated whether DDR1 signaling has cancer cell nonautonomous effects that promote PDAC progression and metastasis, and demonstrated that collagen-induced DDR1 activation in cancer cells is a major stimulus for CXCL5 production, resulting in the recruitment of tumor-associated neutrophils (TANs), the formation of neutrophil extracellular traps (NETs), and subsequent cancer cell invasion and metastases.
Abstract: Pancreatic ductal adenocarcinoma (PDAC) tumors are characterized by a desmoplastic reaction resulting in dense deposition of collagen that is known to promote cancer progression. A central mediator of protumorigenic collagen signaling is the receptor tyrosine kinase discoid domain receptor 1 (DDR1). DDR1 is a critical driver of a mesenchymal and invasive cancer cell PDAC phenotype. Previous studies have demonstrated that genetic or pharmacologic inhibition of DDR1 reduces PDAC tumorigenesis and metastasis. Here, we investigated whether DDR1 signaling has cancer cell nonautonomous effects that promote PDAC progression and metastasis. We demonstrate that collagen-induced DDR1 activation in cancer cells is a major stimulus for CXCL5 production, resulting in the recruitment of tumor-associated neutrophils (TANs), the formation of neutrophil extracellular traps (NETs), and subsequent cancer cell invasion and metastasis. Moreover, we have identified that collagen-induced CXCL5 production was mediated by a DDR1/PKCθ/SYK/NF-κB signaling cascade. Together, these results highlight the critical contribution of the collagen I-DDR1 interaction in the formation of an immune microenvironment that promotes PDAC metastasis.

Journal ArticleDOI
TL;DR: This review uses The Cancer Genome Atlas (TCGA) GBM dataset in combination with a data-mining approach to summarize disease characteristics, with a focus on select molecular pathways that drive GBM pathogenesis.
Abstract: Glioblastoma multiforme (GBM) is amongst the deadliest of human cancers, with a median survival rate of just over one year following diagnosis. Characterized by rapid proliferation and diffuse infiltration into the brain, GBM is notoriously difficult to treat, with tumor cells showing limited response to existing therapies and eventually developing resistance to these interventions. As such, there is intense interest in better understanding the molecular alterations in GBM to guide the development of more efficient targeted therapies. GBM tumors can be classified into several molecular subtypes which have distinct genetic signatures, and they show aberrant activation of numerous signal transduction pathways, particularly those connected to receptor tyrosine kinases (RTKs) which control glioma cell growth, survival, migration, invasion, and angiogenesis. There are also non-canonical modes of RTK signaling found in GBM, which involve G-protein-coupled receptors and calcium channels. This review uses The Cancer Genome Atlas (TCGA) GBM dataset in combination with a data-mining approach to summarize disease characteristics, with a focus on select molecular pathways that drive GBM pathogenesis. We also present a unique genomic survey of RTKs that are frequently altered in GBM subtypes, as well as catalog the GBM disease association scores for all RTKs. Lastly, we discuss current RTK targeted therapies and highlight emerging directions in GBM research.

Journal ArticleDOI
Ahmed Elkamhawy1, Qili Lu1, Hossam Nada1, Jiyu Woo1, Guofeng Quan1, Kyeong Lee1 
TL;DR: In this article, the progress in the development of the most promising DDR1 and DDR2 small molecule inhibitors covering their design approaches, structure-activity relationship (SAR), biological activity, and selectivity is revealed.
Abstract: Discoidin domain receptor (DDR) is a collagen-activated receptor tyrosine kinase that plays critical roles in regulating essential cellular processes such as morphogenesis, differentiation, proliferation, adhesion, migration, invasion, and matrix remodeling. As a result, DDR dysregulation has been attributed to a variety of human cancer disorders, for instance, non-small-cell lung carcinoma (NSCLC), ovarian cancer, glioblastoma, and breast cancer, in addition to some inflammatory and neurodegenerative disorders. Since the target identification in the early 1990s to date, a lot of efforts have been devoted to the development of DDR inhibitors. From a medicinal chemistry perspective, we attempted to reveal the progress in the development of the most promising DDR1 and DDR2 small molecule inhibitors covering their design approaches, structure-activity relationship (SAR), biological activity, and selectivity.

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors found that Uveal melanoma (UM) cells secreted TGF-β1 which induced quiescent hepatic stellate cells (qHSCs) into activated HSCs, which secreted collagen type I. Such a remodeling of extracellular matrix, in turn, activated DDR1, strengthening survival through upregulating STAT3-dependent Mcl-1 expression, enhancing stemness via upregulated STAT3dependent SOX2, and promoting clonogenicity in cancer cells.
Abstract: Colonization is believed a rate-limiting step of metastasis cascade. However, its underlying mechanism is not well understood. Uveal melanoma (UM), which is featured with single organ liver metastasis, may provide a simplified model for realizing the complicated colonization process. Because DDR1 was identified to be overexpressed in UM cell lines and specimens, and abundant pathological deposition of extracellular matrix collagen, a type of DDR1 ligand, was noted in the microenvironment of liver in metastatic patients with UM, we postulated the hypothesis that DDR1 and its ligand might ignite the interaction between UM cells and their surrounding niche of liver thereby conferring strengthened survival, proliferation, stemness and eventually promoting metastatic colonization in liver. We tested this hypothesis and found that DDR1 promoted these malignant cellular phenotypes and facilitated metastatic colonization of UM in liver. Mechanistically, UM cells secreted TGF-β1 which induced quiescent hepatic stellate cells (qHSCs) into activated HSCs (aHSCs) which secreted collagen type I. Such a remodeling of extracellular matrix, in turn, activated DDR1, strengthening survival through upregulating STAT3-dependent Mcl-1 expression, enhancing stemness via upregulating STAT3-dependent SOX2, and promoting clonogenicity in cancer cells. Targeting DDR1 by using 7rh, a specific inhibitor, repressed proliferation and survival in vitro and in vivo outgrowth. More importantly, targeting cancer cells by pharmacological inactivation of DDR1 or targeting microenvironmental TGF-β1-collagen I loop exhibited a prominent anti-metastasis effect in mice. In conclusion, targeting DDR1 signaling and TGF-β signaling may be a novel approach to diminish hepatic metastasis in UM.

Journal ArticleDOI
14 May 2021-Cells
TL;DR: In this article, the authors investigated the role of context-dependent FGFR signaling in cancer and found that the success of targeted therapies in the treatment of cancer is contextdependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor.
Abstract: Increasing evidence indicates that success of targeted therapies in the treatment of cancer is context-dependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor. The Fibroblast Growth Factor (FGF)/FGF receptor (FGFR) signaling axis highlights the importance of such context-dependent signaling in cancer. Aberrant FGFR signaling has been characterized in almost all cancer types, most commonly non-small cell lung cancer (NSCLC), breast cancer, glioblastoma, prostate cancer and gastrointestinal cancer. This occurs primarily through amplification and over-expression of FGFR1 and FGFR2 resulting in ligand-independent activation. Mutations and translocations of FGFR1-4 are also identified in cancer. Canonical FGF-FGFR signaling is tightly regulated by ligand-receptor combinations as well as direct interactions with the FGFR coreceptors heparan sulfate proteoglycans (HSPGs) and Klotho. Noncanonical FGFR signaling partners have been implicated in differential regulation of FGFR signaling. FGFR directly interacts with cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins, contributing to invasive and migratory properties of cancer cells, whereas interactions with other receptor tyrosine kinases (RTKs) regulate angiogenic, resistance to therapy, and metastatic potential of cancer cells. The diversity in FGFR signaling partners supports a role for FGFR signaling in cancer, independent of genetic aberration.

Posted ContentDOI
13 May 2021-bioRxiv
TL;DR: In this paper, small molecule inhibitors targeting the PI3K p110α catalytic subunit have entered clinical trials, with early-phase GDC-0077 (Inavolisib) studies showing anti-tumor activity and a manageable safety profile in patients with PIK3CA-mutant, hormone receptor-positive breast cancer as a single agent or in combination therapy.
Abstract: PIK3CA is one of the most frequently mutated oncogenes; the p110α protein it encodes plays a central role in tumor cell proliferation and survival. Small molecule inhibitors targeting the PI3K p110α catalytic subunit have entered clinical trials, with early-phase GDC-0077 (Inavolisib) studies showing anti-tumor activity and a manageable safety profile in patients with PIK3CA-mutant, hormone receptor-positive breast cancer as a single agent or in combination therapy. Despite this, preclinical studies have shown that PI3K pathway inhibition releases negative feedback and activates receptor tyrosine kinase signaling, reengaging the pathway and attenuating drug activity. Here we discover that GDC-0077 and taselisib more potently inhibit mutant PI3K pathway signaling and cell viability through unique HER2-dependent degradation. Both are more effective than other PI3K inhibitors at maintaining prolonged pathway suppression, resulting in enhanced apoptosis and greater efficacy. This unique mechanism against mutant p110α reveals a new strategy for creating inhibitors that specifically target mutant tumors with selective degradation of the mutant oncoprotein and also provide a strong rationale for pursuing PI3Kα degraders in patients with HER2-positive breast cancer.

Journal ArticleDOI
TL;DR: In this paper, the role of Glutathione peroxidase 4 (GPX4) and mammalian target of rapamycin (mTOR) in regulation of lung cancer cells response to Lapatinib (Lap).

Journal ArticleDOI
TL;DR: Discoidin domain receptors (DDR), including DDR1 and DDR2, are special types of the transmembrane receptor tyrosine kinase superfamily and activate signal transduction pathways that regulate cell-collagen interactions involved in multiple physiological and pathological processes such as cell proliferation, migration, apoptosis, and cytokine secretion as mentioned in this paper.
Abstract: Discoidin domain receptors (DDR), including DDR1 and DDR2, are special types of the transmembrane receptor tyrosine kinase superfamily. DDR are activated by binding to the triple-helical collagen and, in turn, DDR can activate signal transduction pathways that regulate cell-collagen interactions involved in multiple physiological and pathological processes such as cell proliferation, migration, apoptosis, and cytokine secretion. Recently, DDR have been found to contribute to various diseases, including cancer. In addition, aberrant expressions of DDR have been reported in various human cancers, which indicates that DDR1 and DDR2 could be new targets for cancer treatment. Considerable effort has been made to design DDR inhibitors and several molecules have shown therapeutic effects in pre-clinical models. In this article, we review the recent literature on the role of DDR in cancer progression, the development status of DDR inhibitors, and the clinical potential of targeting DDR in cancer therapies.

Journal ArticleDOI
TL;DR: In this article, the authors explored the dynamic structure and structure-function relationships of these two growth factor receptors and their significance as it relates to theranostics of cancer, followed by some of the common inhibition modalities frequently employed to target EGFR and VEGFR, such as tyrosine kinase inhibitors (TKIs), antibodies, nanobodies, and peptides.
Abstract: Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) are two extensively studied membrane-bound receptor tyrosine kinase proteins that are frequently overexpressed in many cancers. As a result, these receptor families constitute attractive targets for imaging and therapeutic applications in the detection and treatment of cancer. This review explores the dynamic structure and structure-function relationships of these two growth factor receptors and their significance as it relates to theranostics of cancer, followed by some of the common inhibition modalities frequently employed to target EGFR and VEGFR, such as tyrosine kinase inhibitors (TKIs), antibodies, nanobodies, and peptides. A summary of the recent advances in molecular imaging techniques, including positron emission tomography (PET), single-photon emission computerized tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and optical imaging (OI), and in particular, near-IR fluorescence imaging using tetrapyrrolic-based fluorophores, concludes this review.

Journal ArticleDOI
TL;DR: The colony stimulating factor 1 receptor (CSF-1R), also known as c-FMS kinase, is in the class III receptor tyrosine kinase family, along with c-Kit, Flt3 and PDGFRα as mentioned in this paper.
Abstract: Colony stimulating factor 1 receptor (CSF-1R, also known as c-FMS kinase) is in the class III receptor tyrosine kinase family, along with c-Kit, Flt3 and PDGFRα. CSF-1/CSF-1R signaling promotes the...