scispace - formally typeset
Search or ask a question

Showing papers on "Secretion published in 2013"


Journal ArticleDOI
TL;DR: The results reveal a role for selected ESCRT components and accessory proteins in exosome secretion and composition by HeLa-CIITA and highlight biogenetic differences in vesicles secreted by a tumour cell line and primary DCs.
Abstract: Exosomes are extracellular vesicles (EVs) secreted upon fusion of endosomal multivesicular bodies (MVBs) with the plasma membrane. The mechanisms involved in their biogenesis have not yet been fully identified although they could be used to modulate exosome formation and therefore are a promising tool in understanding exosome functions. We have performed an RNA interference screen targeting 23 components of the endosomal sorting complex required for transport (ESCRT) machinery and associated proteins in MHC class II (MHC II)-expressing HeLa-CIITA cells. Silencing of HRS, STAM1 or TSG101 reduced the secretion of EV-associated CD63 and MHC II but each gene altered differently the size and/or protein composition of secreted EVs, as quantified by immuno-electron microscopy. By contrast, depletion of VPS4B augmented this secretion while not altering the features of EVs. For several other ESCRT subunits, it was not possible to draw any conclusions about their involvement in exosome biogenesis from the screen. Interestingly, silencing of ALIX increased MHC II exosomal secretion, as a result of an overall increase in intracellular MHC II protein and mRNA levels. In human dendritic cells (DCs), ALIX depletion also increased MHC II in the cells, but not in the released CD63-positive EVs. Such differences could be attributed to a greater heterogeneity in size, and higher MHC II and lower CD63 levels in vesicles recovered from DCs as compared with HeLa-CIITA. The results reveal a role for selected ESCRT components and accessory proteins in exosome secretion and composition by HeLa-CIITA. They also highlight biogenetic differences in vesicles secreted by a tumour cell line and primary DCs.

1,102 citations


Journal ArticleDOI
TL;DR: The properties of human pancreatic β cells are discussed: their glucose sensing, the ion channel complement underlying glucose-induced electrical activity that culminates in exocytotic release of insulin, the cellular control ofExocytosis, and the modulation of insulin secretion by circulating hormones and locally released neurotransmitters.
Abstract: Pancreatic β cells secrete insulin, the body's only hormone capable of lowering plasma glucose levels. Impaired or insufficient insulin secretion results in diabetes mellitus. The β cell is electrically excitable; in response to an elevation of glucose, it depolarizes and starts generating action potentials. The electrophysiology of mouse β cells and the cell's role in insulin secretion have been extensively investigated. More recently, similar studies have been performed on human β cells. These studies have revealed numerous and important differences between human and rodent β cells. Here we discuss the properties of human pancreatic β cells: their glucose sensing, the ion channel complement underlying glucose-induced electrical activity that culminates in exocytotic release of insulin, the cellular control of exocytosis, and the modulation of insulin secretion by circulating hormones and locally released neurotransmitters. Finally, we consider the pathophysiology of insulin secretion and the interactions between genetics and environmental factors that may explain the current diabetes epidemic.

526 citations


Journal ArticleDOI
TL;DR: It is found that stimulation of neuronal activity, or AMPA receptor activation, induces tau release from healthy, mature cortical neurons, and that AMPA‐induced release of tau is calcium‐dependent.
Abstract: Propagation of tau pathology is linked with progressive neurodegeneration, but the mechanism underlying trans‐synaptic spread of tau is unknown. We show that stimulation of neuronal activity, or AMPA receptor activation, induces tau release from healthy, mature cortical neurons. Notably, phosphorylation of extracellular tau appears reduced in comparison with intracellular tau. We also find that AMPA‐induced release of tau is calcium‐dependent. Blocking pre‐synaptic vesicle release by tetanus toxin and inhibiting neuronal activity with tetrodotoxin both significantly impair AMPA‐mediated tau release. Tau secretion is therefore a regulatable process, dysregulation of which could lead to the spread of tau pathology in disease.

518 citations


Journal ArticleDOI
TL;DR: The current knowledge of the pathways involved in both positive and negative metabolic signaling for insulin secretion are reviewed and the role of established and candidate metabolic coupling factors are assessed, keeping recent developments in focus.

455 citations


Journal ArticleDOI
TL;DR: It is shown that adenine nucleotides released from tumor cell-activated platelets induce opening of the endothelial barrier to allow transendothelial migration of tumor cells and thereby promote cancer cell extravasation.

452 citations


Journal ArticleDOI
TL;DR: This work identified specialized invasive actin structures called invadopodia as specific and critical docking and secretion sites for CD63- and Rab27a-positive MVEs and revealed a fundamental role for exosomes in promoting cancer cell invasiveness.

415 citations


Journal ArticleDOI
07 Aug 2013-Nature
TL;DR: It is demonstrated that PAAR proteins are essential for T6SS-mediated secretion and target cell killing by Vibrio cholerae and Acinetobacter baylyi.
Abstract: An X-ray structure of bacterial type VI secretion system components reveals that PAAR family proteins bind at the tip of the VgrG spike, providing new insights into the mechanisms of type VI secretion; experiments using bacteria confirmed the importance of PAAR proteins. The bacterial type VI secretion system (T6SS) is an organelle responsible for translocating a range of toxic effector molecules into both bacterial and eukaryotic prey cells. This manuscript describes how proteins from the PAAR-repeat superfamily form a sharp conical extension on the VgrG bacteriophage tail spike, a protein complex involved in penetrating the prey cell, and also have a role in recruiting effectors. These data support a new model for the T6SS in which a sharpened spike is decorated by multiple effectors that are delivered in concert into target cells by a single contraction-driven translocation event. The bacterial type VI secretion system (T6SS) is a large multicomponent, dynamic macromolecular machine that has an important role in the ecology of many Gram-negative bacteria. T6SS is responsible for translocation of a wide range of toxic effector molecules, allowing predatory cells to kill both prokaryotic as well as eukaryotic prey cells1,2,3,4,5. The T6SS organelle is functionally analogous to contractile tails of bacteriophages and is thought to attack cells by initially penetrating them with a trimeric protein complex called the VgrG spike6,7. Neither the exact protein composition of the T6SS organelle nor the mechanisms of effector selection and delivery are known. Here we report that proteins from the PAAR (proline-alanine-alanine-arginine) repeat superfamily form a sharp conical extension on the VgrG spike, which is further involved in attaching effector domains to the spike. The crystal structures of two PAAR-repeat proteins bound to VgrG-like partners show that these proteins sharpen the tip of the T6SS spike complex. We demonstrate that PAAR proteins are essential for T6SS-mediated secretion and target cell killing by Vibrio cholerae and Acinetobacter baylyi. Our results indicate a new model of the T6SS organelle in which the VgrG–PAAR spike complex is decorated with multiple effectors that are delivered simultaneously into target cells in a single contraction-driven translocation event.

413 citations


Journal ArticleDOI
TL;DR: It is shown that Gram-negative Rhs proteins and the distantly related wall-associated protein A from Gram-positive bacteria mediate intercellular competition and share a common function in contact-dependent growth inhibition.
Abstract: Rearrangement hotspot (Rhs) and related YD-peptide repeat proteins are widely distributed in bacteria and eukaryotes, but their functions are poorly understood. Here, we show that Gram-negative Rhs proteins and the distantly related wall-associated protein A (WapA) from Gram-positive bacteria mediate intercellular competition. Rhs and WapA carry polymorphic C-terminal toxin domains (Rhs-CT/WapA-CT), which are deployed to inhibit the growth of neighboring cells. These systems also encode sequence-diverse immunity proteins (RhsI/WapI) that specifically neutralize cognate toxins to protect rhs+/wapA+ cells from autoinhibition. RhsA and RhsB from Dickeya dadantii 3937 carry nuclease domains that degrade target cell DNA. D. dadantii 3937 rhs genes do not encode secretion signal sequences but are linked to hemolysin-coregulated protein and valine-glycine repeat protein G genes from type VI secretion systems. Valine-glycine repeat protein G is required for inhibitor cell function, suggesting that Rhs may be exported from D. dadantii 3937 through a type VI secretion mechanism. In contrast, WapA proteins from Bacillus subtilis strains appear to be exported through the general secretory pathway and deliver a variety of tRNase toxins into neighboring target cells. These findings demonstrate that YD-repeat proteins from phylogenetically diverse bacteria share a common function in contact-dependent growth inhibition.

348 citations


Journal ArticleDOI
TL;DR: In addition to allowing immune cells to signal tissue damage, HMBG1 is secreted by senescent cells to initiate inflammatory cytokine secretion.
Abstract: Cellular senescence irreversibly arrests proliferation in response to potentially oncogenic stress. Senescent cells also secrete inflammatory cytokines such as IL-6, which promote age-associated inflammation and pathology. HMGB1 (high mobility group box 1) modulates gene expression in the nucleus, but certain immune cells secrete HMGB1 as an extracellular Alarmin to signal tissue damage. We show that nuclear HMGB1 relocalized to the extracellular milieu in senescent human and mouse cells in culture and in vivo. In contrast to cytokine secretion, HMGB1 redistribution required the p53 tumor suppressor, but not its activator ATM. Moreover, altered HMGB1 expression induced a p53-dependent senescent growth arrest. Senescent fibroblasts secreted oxidized HMGB1, which stimulated cytokine secretion through TLR-4 signaling. HMGB1 depletion, HMGB1 blocking antibody, or TLR-4 inhibition attenuated senescence-associated IL-6 secretion, and exogenous HMGB1 stimulated NF-κB activity and restored IL-6 secretion to HMGB1-depleted cells. Our findings identify senescence as a novel biological setting in which HMGB1 functions and link HMGB1 redistribution to p53 activity and senescence-associated inflammation.

343 citations


Journal ArticleDOI
TL;DR: It is shown that type III secretion system (T3SS) needle proteins from several bacterial pathogens, including Salmonella typhimurium, enterohemorrhagic Escherichia coli, Shigella flexneri, and Burkholderia spp.
Abstract: Inflammasome mediated by central nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) protein is critical for defense against bacterial infection. Here we show that type III secretion system (T3SS) needle proteins from several bacterial pathogens, including Salmonella typhimurium, enterohemorrhagic Escherichia coli, Shigella flexneri, and Burkholderia spp., can induce robust inflammasome activation in both human monocyte-derived and mouse bone marrow macrophages. Needle protein activation of human NRL family CARD domain containing 4 (NLRC4) inflammasome requires the sole human neuronal apoptosis inhibitory protein (hNAIP). Among the seven mouse NAIPs, NAIP1 functions as the mouse counterpart of hNAIP. We found that NAIP1 recognition of T3SS needle proteins was more robust in mouse dendritic cells than in bone marrow macrophages. Needle proteins, as well as flagellin and rod proteins from five different bacteria, exhibited differential and cell type-dependent inflammasome-stimulating activity. Comprehensive profiling of the three types of NAIP ligands revealed that NAIP1 sensing of the needle protein dominated S. flexneri-induced inflammasome activation, particularly in dendritic cells. hNAIP/NAIP1 and NAIP2/5 formed a large oligomeric complex with NLRC4 in the presence of corresponding bacterial ligands, and could support reconstitution of the NLRC4 inflammasome in a ligand-specific manner.

331 citations


Journal ArticleDOI
TL;DR: This review will focus on exosomes as intercellular signaling organelles involved in a number of physiological as well as pathological processes and their potential use in clinical diagnostics and therapeutics.
Abstract: Cell to cell communication is essential for the coordination and proper organization of different cell types in multicellular systems. Cells exchange information through a multitude of mechanisms such as secreted growth factors and chemokines, small molecules (peptides, ions, bioactive lipids and nucleotides), cell-cell contact and the secretion of extracellular matrix components. Over the last few years, however, a considerable amount of experimental evidence has demonstrated the occurrence of a sophisticated method of cell communication based on the release of specialized membranous nano-sized vesicles termed exosomes. Exosome biogenesis involves the endosomal compartment, the multivesicular bodies (MVB), which contain internal vesicles packed with an extraordinary set of molecules including enzymes, cytokines, nucleic acids and different bioactive compounds. In response to stimuli, MVB fuse with the plasma membrane and vesicles are released in the extracellular space where they can interact with neighboring cells and directly induce a signaling pathway or affect the cellular phenotype through the transfer of new receptors or even genetic material. This review will focus on exosomes as intercellular signaling organelles involved in a number of physiological as well as pathological processes and their potential use in clinical diagnostics and therapeutics.

Journal ArticleDOI
25 Apr 2013-Nature
TL;DR: The surprising finding that virulence-associated phospholipases can serve as specific antibacterial effectors suggests that interbacterial interactions are a relevant factor driving the continuing evolution of pathogenesis.
Abstract: Membranes allow the compartmentalization of biochemical processes and are therefore fundamental to life. The conservation of the cellular membrane, combined with its accessibility to secreted proteins, has made it a common target of factors mediating antagonistic interactions between diverse organisms. Here we report the discovery of a diverse superfamily of bacterial phospholipase enzymes. Within this superfamily, we defined enzymes with phospholipase A1 and A2 activity, which are common in host-cell-targeting bacterial toxins and the venoms of certain insects and reptiles. However, we find that the fundamental role of the superfamily is to mediate antagonistic bacterial interactions as effectors of the type VI secretion system (T6SS) translocation apparatus; accordingly, we name these proteins type VI lipase effectors. Our analyses indicate that PldA of Pseudomonas aeruginosa, a eukaryotic-like phospholipase D, is a member of the type VI lipase effector superfamily and the founding substrate of the haemolysin co-regulated protein secretion island II T6SS (H2-T6SS). Although previous studies have specifically implicated PldA and the H2-T6SS in pathogenesis, we uncovered a specific role for the effector and its secretory machinery in intra- and interspecies bacterial interactions. Furthermore, we find that this effector achieves its antibacterial activity by degrading phosphatidylethanolamine, the major component of bacterial membranes. The surprising finding that virulence-associated phospholipases can serve as specific antibacterial effectors suggests that interbacterial interactions are a relevant factor driving the continuing evolution of pathogenesis.

Journal ArticleDOI
TL;DR: These studies reveal that heparanase helps drive exosome secretion, altersExosome composition, and facilitates production of exosomes that impact both tumor and host cell behavior, thereby promoting tumor progression.

Journal ArticleDOI
TL;DR: The data suggest that acidic environment represents a novel endogenous danger signal alerting the innate immunity, and may contribute to inflammation in acidosis-associated pathologies such as atherosclerosis and post-ischemic inflammatory responses.

Journal ArticleDOI
TL;DR: It is demonstrated that renal Oat3 resides in LRD-rich membranes in proximity to cytoskeletal and signaling proteins, indicating that the integrity of LRD -rich membranes and their associated proteins are essential for Oat2 expression and function.
Abstract: Background/Aims: In humans and rodents, organic anion transporter 3 (Oat3) is highly expressed on the basolateral membrane of renal proximal tubules and mediates the secretion of exogenous and endogenous anions. Regulation of Oat3 expression and function has been observed in both expression system and intact renal epithelia. However, information on the local membrane environment of Oat3 and its role is limited. Lipid raft domains (LRD; cholesterol-rich domains of the plasma membrane) play important roles in membrane protein expression, function and targeting. In the present study, we have examined the role of LRDrich membranes and their associated cytoskeletal proteins on Oat3 expression and function. Methods: LRD-rich membranes were isolated from rat renal cortical tissues and from HEK-293 cells stably expressing human OAT3 (hOAT3) by differential centrifugation with triton X-100 extraction. Western blots were subsequently analyzed to determine protein expression. In addition, the effect of disruption of LRD-rich membranes was examined on functional Oat3 mediated estrone sulfate (ES) transport in rat renal cortical slices. Cytoskeleton disruptors were investigated in both hOAT3 expressing HEK-293 cells and rat renal cortical slices. Results: Lipid-enriched membranes from rat renal cortical tissues and hOAT3-expressing HEK-293 cells showed co-expression of rOat3/hOAT3 and several lipid raft-associated proteins, specifically caveolin 1 (Cav1), β-actin and myosin. Moreover, immunohistochemistry in hOAT3-expressing HEK-293 cells demonstrated that these LRD-rich proteins co-localized with hOAT3. Potassium iodide (KI), an inhibitor of protein-cytoskeletal interaction, effectively detached cytoskeleton proteins and hOAT3 from plasma membrane, leading to redistribution of hOAT3 into non-LRDrich compartments. In addition, inhibition of cytoskeleton integrity and membrane trafficking

Journal ArticleDOI
TL;DR: A high-throughput approach using transposon mutagenesis and deep sequencing (Tn-seq) to identify T6SS immunity proteins in Vibrio cholerae shows these are important for not only antibacterial and antieukaryotic activities but also assembly of T 6SS apparatus.
Abstract: Type VI protein secretion system (T6SS) is important for bacterial competition through contact-dependent killing of competitors. T6SS delivers effectors to neighboring cells and corresponding antagonistic proteins confer immunity against effectors that are delivered by sister cells. Although T6SS has been found in more than 100 gram-negative bacteria including many important human pathogens, few T6SS-dependent effector and immunity proteins have been experimentally determined. Here we report a high-throughput approach using transposon mutagenesis and deep sequencing (Tn-seq) to identify T6SS immunity proteins in Vibrio cholerae. Saturating transposon mutagenesis was performed in wild type and a T6SS null mutant. Genes encoding immunity proteins were predicted to be essential in the wild type but dispensable in the T6SS mutant. By comparing the relative abundance of each transposon mutant in the mutant library using deep sequencing, we identified three immunity proteins that render protection against killing by T6SS predatory cells. We also identified their three cognate T6SS-secreted effectors and show these are important for not only antibacterial and antieukaryotic activities but also assembly of T6SS apparatus. The lipase and muramidase T6SS effectors identified in this study underscore the diversity of T6SS-secreted substrates and the distinctly different mechanisms that target these for secretion by the dynamic T6SS organelle.

Journal ArticleDOI
14 Nov 2013-Blood
TL;DR: Mechanistically, C3a drives IL-1β production in monocytes by controlling the release of intracellular ATP into the extracellular space via regulation of as-yet unidentified ATP-releasing channels in an extacellular signal-regulated kinase 1/2-dependent fashion, which defines a novel function for complement in inflammasome activation in monocyte activation.

Journal ArticleDOI
TL;DR: The results suggest that though the host cell responds to HSV-1 infection by IFI16 and NLRP3 inflammasomes early during infection, HSv-1 has evolved mechanisms to shut down these responses to evade the proinflammatory consequences.
Abstract: Inflammasomes are multiprotein complexes that recognize pathogens and pathogen- or danger-associated molecular patterns. They induce the maturation and secretion of powerful proinflammatory interleukin-1B (IL-1β), IL-18, and IL-33 cytokines, which in turn activate expression of other immune genes and lymphocyte recruitment to the site of primary infection, thereby controlling invading pathogens. Inflammasomes are comprised of cytoplasmic sensor molecules, such as NLRP3 and AIM2 or nuclear sensor IFI16, the adaptor protein ASC (apoptosis-associated speck-like protein containing CARD), and the effector protein procaspase-1. Herpes simplex virus 1 (HSV-1), a ubiquitous virus that infects humans and establishes life-long latency, has evolved numerous mechanisms to evade host detection and immune responses. Here, we show that early during in vitro infection of human foreskin fibroblasts (2 to 4 h), HSV-1 induced the activation of the IFI16 and NLRP3 inflammasomes and maturation of IL-1β. Independent of viral gene expression, IFI16 recognized the HSV-1 genome in infected cell nuclei, relocalized, and colocalized with ASC in the cytoplasm. However, HSV-1 specifically targeted IFI16 for rapid proteasomic degradation at later times postinfection, which was dependent on the expression of ICP0, an immediate early protein of HSV-1. In contrast, NLRP3, AIM2, and ASC levels were not decreased. Also, caspase-1 was "trapped" in actin clusters at later time points that likely blocked the NLRP3/IFI16 inflammasome activity. In addition, the secretion of mature IL-1β was inhibited. These results suggest that though the host cell responds to HSV-1 infection by IFI16 and NLRP3 inflammasomes early during infection, HSV-1 has evolved mechanisms to shut down these responses to evade the proinflammatory consequences.

Journal ArticleDOI
TL;DR: A role for ROS-induced autophagy is unraveled in weakening functional interaction between dying cancer cells and the immune system thereby helping in evasion from ICD prerequisites or determinants.
Abstract: Calreticulin surface exposure (ecto-CALR), ATP secretion, maturation of dendritic cells (DCs) and stimulation of T cells are prerequisites for anticancer therapy-induced immunogenic cell death (ICD). Recent evidence suggests that chemotherapy-induced autophagy may positively regulate ICD by favoring ATP secretion. We have recently shown that reactive oxygen species (ROS)-based endoplasmic reticulum (ER) stress triggered by hypericin-mediated photodynamic therapy (Hyp-PDT) induces bona fide ICD. However, whether Hyp-PDT-induced autophagy regulates ICD was not explored. Here we showed that, in contrast to expectations, reducing autophagy (by ATG5 knockdown) in cancer cells did not alter ATP secretion after Hyp-PDT. Autophagy-attenuated cancer cells displayed enhanced ecto-CALR induction following Hyp-PDT, which strongly correlated with their inability to clear oxidatively damaged proteins. Furthermore, autophagy-attenuation in Hyp-PDT-treated cancer cells increased their ability to induce DC maturation, IL6 production and proliferation of CD4(+) or CD8(+) T cells, which was accompanied by IFNG production. Thus, our study unravels a role for ROS-induced autophagy in weakening functional interaction between dying cancer cells and the immune system thereby helping in evasion from ICD prerequisites or determinants.

Journal ArticleDOI
12 Sep 2013-Nature
TL;DR: The activity of NleB suggests that EPEC and other attaching and effacing pathogens antagonize death-receptor-induced apoptosis of infected cells, thereby blocking a major antimicrobial host response.
Abstract: Successful infection by enteric bacterial pathogens depends on the ability of the bacteria to colonize the gut, replicate in host tissues and disseminate to other hosts. Pathogens such as Salmonella, Shigella and enteropathogenic and enterohaemorrhagic (EPEC and EHEC, respectively) Escherichia coli use a type III secretion system (T3SS) to deliver virulence effector proteins into host cells during infection that promote colonization and interfere with antimicrobial host responses. Here we report that the T3SS effector NleB1 from EPEC binds to host cell death-domain-containing proteins and thereby inhibits death receptor signalling. Protein interaction studies identified FADD, TRADD and RIPK1 as binding partners of NleB1. NleB1 expressed ectopically or injected by the bacterial T3SS prevented Fas ligand or TNF-induced formation of the canonical death-inducing signalling complex (DISC) and proteolytic activation of caspase-8, an essential step in death-receptor-induced apoptosis. This inhibition depended on the N-acetylglucosamine transferase activity of NleB1, which specifically modified Arg 117 in the death domain of FADD. The importance of the death receptor apoptotic pathway to host defence was demonstrated using mice deficient in the FAS signalling pathway, which showed delayed clearance of the EPEC-like mouse pathogen Citrobacter rodentium and reversion to virulence of an nleB mutant. The activity of NleB suggests that EPEC and other attaching and effacing pathogens antagonize death-receptor-induced apoptosis of infected cells, thereby blocking a major antimicrobial host response.

Journal ArticleDOI
TL;DR: In this paper, the authors identify miR-30c as a regulator of both microsomal triglyceride transfer protein, needed for the secretion of APOB-containing lipoproteins such as low-density lipoproteinins, and a number of other genes involved in lipid biosynthesis.
Abstract: This study identifies miR-30c as a regulator of both microsomal triglyceride transfer protein, needed for the secretion of APOB-containing lipoproteins such as low-density lipoproteins, and a number of other genes involved in lipid biosynthesis. In mice, miR-30c regulates hepatic lipid biosynthesis and lipoprotein secretion such that hepatic overexpression of miR-30c reduces plasma cholesterol and triglyceride concentrations and decreases atherosclerotic plaque burden.

Journal ArticleDOI
TL;DR: It is reported that haemolysin coregulated protein (Hcp), a ring-shaped hexamer secreted by all characterized T6SSs, binds specifically to cognate effector molecules, highlighting fundamental differences between the export mechanism of T6 and other characterized secretory pathways.

Journal ArticleDOI
TL;DR: The role of KATP channels might contribute not only to the initiation of insulin release but also to the graded stimulation of insulin secretion that occurs with increasing glucose concentrations, as well as their potential use to target the glucagon secretory defects found in diabetes mellitus.
Abstract: ATP-sensitive potassium channels (K(ATP) channels) link cell metabolism to electrical activity by controlling the cell membrane potential. They participate in many physiological processes but have a particularly important role in systemic glucose homeostasis by regulating hormone secretion from pancreatic islet cells. Glucose-induced closure of K(ATP) channels is crucial for insulin secretion. Emerging data suggest that K(ATP) channels also play a key part in glucagon secretion, although precisely how they do so remains controversial. This Review highlights the role of K(ATP) channels in insulin and glucagon secretion. We discuss how K(ATP) channels might contribute not only to the initiation of insulin release but also to the graded stimulation of insulin secretion that occurs with increasing glucose concentrations. The various hypotheses concerning the role of K(ATP) channels in glucagon release are also reviewed. Furthermore, we illustrate how mutations in K(ATP) channel genes can cause hyposecretion or hypersecretion of insulin, as in neonatal diabetes mellitus and congenital hyperinsulinism, and how defective metabolic regulation of the channel may underlie the hypoinsulinaemia and the hyperglucagonaemia that characterize type 2 diabetes mellitus. Finally, we outline how sulphonylureas, which inhibit K(ATP) channels, stimulate insulin secretion in patients with neonatal diabetes mellitus or type 2 diabetes mellitus, and suggest their potential use to target the glucagon secretory defects found in diabetes mellitus.

Journal ArticleDOI
TL;DR: Current understanding of the diverse roles of mucin-type O-glycosylation during eukaryotic development is summarized.

Journal ArticleDOI
TL;DR: In this paper, the authors compare the core proteins in the context of the alginate, cellulose, and poly-β-d-N-acetylglucosamine (PNAG) secretion systems.

Journal ArticleDOI
TL;DR: Evidence that T. cruzi releases proteins associated with vesicles that are formed by at least two different mechanisms is presented, and results suggest that metacyclic forms may use extracellular vesicle to deliver cargo into host cells.
Abstract: Microorganisms use specialized systems to export virulence factors into host cells. Secretion of effector proteins into the extracellular environment has been described in Trypanosoma cruzi; however, a comprehensive proteomic analysis of the secretome and the secretion mechanisms involved remain elusive. Here, we present evidence that T. cruzi releases proteins associated with vesicles that are formed by at least two different mechanisms. Transmission electron microscopy showed larger vesicles budding from the plasma membrane of noninfective epimastigotes and infective metacyclic trypomastigotes, as well as smaller vesicles within the flagellar pocket of both forms. Parasite conditioned culture supernatant was fractionated and characterized by morphological, immunochemical, and proteomic analyses. Three fractions were obtained by differential ultracentrifugation: the first enriched in larger vesicles resembling ectosomes, the second enriched in smaller vesicles resembling exosomes, and a third fraction en...

Journal ArticleDOI
TL;DR: It is demonstrated that mitochondrial membrane potential-dependent association between NLRP3 and mitochondrial outer membrane protein mitofusin 2, a key regulator of mitochondrial fusion, is required for the full activation of theNLRP3 inflammasome after infection with RNA viruses.
Abstract: Nod-like receptor family, pyrin domain-containing 3 (NLRP3), is involved in the early stages of the inflammatory response by sensing cellular damage or distress due to viral or bacterial infection. Activation of NLRP3 triggers its assembly into a multimolecular protein complex, termed “NLRP3 inflammasome.” This event leads to the activation of the downstream molecule caspase-1 that cleaves the precursor forms of proinflammatory cytokines, such as interleukin 1 beta (IL-1β) and IL-18, and initiates the immune response. Recent studies indicate that the reactive oxygen species produced by mitochondrial respiration is critical for the activation of the NLRP3 inflammasome by monosodium urate, alum, and ATP. However, the precise mechanism by which RNA viruses activate the NLRP3 inflammasome is not well understood. Here, we show that loss of mitochondrial membrane potential [ΔΨ(m)] dramatically reduced IL-1β secretion after infection with influenza, measles, or encephalomyocarditis virus (EMCV). Reduced IL-1β secretion was also observed following overexpression of the mitochondrial inner membrane protein, uncoupling protein-2, which induces mitochondrial proton leakage and dissipates ΔΨ(m). ΔΨ(m) was required for association between the NLRP3 and mitofusin 2, a mediator of mitochondrial fusion, after infection with influenza virus or EMCV. Importantly, the knockdown of mitofusin 2 significantly reduced the secretion of IL-1β after infection with influenza virus or EMCV. Our results provide insight into the roles of mitochondria in NLRP3 inflammasome activation.

Journal ArticleDOI
TL;DR: The Dot/Icm (defect in organelle trafficking/intracellular multiplication) system is described, which is used by C. burnetii to secrete a range of effector proteins into the host cell, and the role of these effectors in remodelling thehost cell is discussed.
Abstract: The agent of Q fever, Coxiella burnetii, is an obligate intracellular bacterium that causes acute and chronic infections. The study of C. burnetii pathogenesis has benefited from two recent fundamental advances: improved genetic tools and the ability to grow the bacterium in extracellular media. In this Review, we describe how these recent advances have improved our understanding of C. burnetii invasion and host cell modulation, including the formation of replication-permissive Coxiella-containing vacuoles. Furthermore, we describe the Dot/Icm (defect in organelle trafficking/intracellular multiplication) system, which is used by C. burnetii to secrete a range of effector proteins into the host cell, and we discuss the role of these effectors in remodelling the host cell.

Journal ArticleDOI
TL;DR: Autophagy proteins can control secretory function through ROS, which is in part generated by LC3‐positive vacuole‐associated NADPH oxidases, which provides a novel mechanism by which autophagyprotein can control secretion.
Abstract: Delivery of granule contents to epithelial surfaces by secretory cells is a critical physiologic process. In the intestine, goblet cells secrete mucus that is required for homeostasis. Autophagy proteins are required for secretion in some cases, though the mechanism and cell biological basis for this requirement remain unknown. We found that in colonic goblet cells, proteins involved in initiation and elongation of autophagosomes were required for efficient mucus secretion. The autophagy protein LC3 localized to intracellular multi-vesicular vacuoles that were consistent with a fusion of autophagosomes and endosomes. Using cultured intestinal epithelial cells, we found that NADPH oxidases localized to and enhanced the formation of these LC3-positive vacuoles. Both autophagy proteins and endosome formation were required for maximal production of reactive oxygen species (ROS) derived from NADPH oxidases. Importantly, generation of ROS was critical to control mucin granule accumulation in colonic goblet cells. Thus, autophagy proteins can control secretory function through ROS, which is in part generated by LC3-positive vacuole-associated NADPH oxidases. These findings provide a novel mechanism by which autophagy proteins can control secretion.

Journal ArticleDOI
TL;DR: The aim of this review is to provide the readers with an update on goblet cell biology and current understanding on the role of mucins in host defense in enteric infections.
Abstract: Goblet cells reside throughout the gastrointestinal (GI) tract and are responsible for the production and preservation of a protective mucus blanket by synthesizing and secreting high molecular weight glycoproteins known as mucins. The concept of the mucus layer functioning as a dynamic protective barrier is suggested by studies showing changes in mucins in inflammatory conditions of the GI tract, by the altered goblet cell response in germ-free animals, and by the enhanced mucus secretion seen in response to infections. The mucin-containing mucus layer coating the GI epithelium is the front line of innate host defense. Mucins are likely to be the first molecules that invading pathogens interact with at the cell surface and thus, can limit binding to other glycoproteins and neutralize the pathogen. This review will focus on what is known about goblet cell response in various GI infections and the regulatory networks that mediate goblet cell function and mucin production in response to intestinal insults. In addition, we describe the current knowledge on the role of mucins in intestinal innate defense. It is the aim of this review to provide the readers with an update on goblet cell biology and current understanding on the role of mucins in host defense in enteric infections.