scispace - formally typeset
Search or ask a question

Showing papers on "Synaptic signaling published in 2021"


Journal ArticleDOI
TL;DR: The authors performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci, including genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics.
Abstract: Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies.

378 citations


Journal ArticleDOI
TL;DR: In this article, the authors identify three major molecular subtypes of Alzheimer's disease corresponding to different combinations of multiple dysregulated pathways, such as susceptibility to tau-mediated neurodegeneration, amyloid-β neuroinflammation, synaptic signaling, immune activity, mitochondria organization, and myelination.
Abstract: Alzheimer’s disease (AD), the most common form of dementia, is recognized as a heterogeneous disease with diverse pathophysiologic mechanisms. In this study, we interrogate the molecular heterogeneity of AD by analyzing 1543 transcriptomes across five brain regions in two AD cohorts using an integrative network approach. We identify three major molecular subtypes of AD corresponding to different combinations of multiple dysregulated pathways, such as susceptibility to tau-mediated neurodegeneration, amyloid-β neuroinflammation, synaptic signaling, immune activity, mitochondria organization, and myelination. Multiscale network analysis reveals subtype-specific drivers such as GABRB2, LRP10, MSN, PLP1, and ATP6V1A. We further demonstrate that variations between existing AD mouse models recapitulate a certain degree of subtype heterogeneity, which may partially explain why a vast majority of drugs that succeeded in specific mouse models do not align with generalized human trials across all AD subtypes. Therefore, subtyping patients with AD is a critical step toward precision medicine for this devastating disease.

94 citations


Journal ArticleDOI
TL;DR: The prefrontal cortex (PFC) serves as the chief executive officer of the brain, controlling the highest level cognitive and emotional processes as discussed by the authors, and its local circuits among glutamatergic principal neurons and GABAergic interneurons, as well as its long-range connections with other brain regions, have been functionally linked to specific behaviors.
Abstract: The prefrontal cortex (PFC) serves as the chief executive officer of the brain, controlling the highest level cognitive and emotional processes. Its local circuits among glutamatergic principal neurons and GABAergic interneurons, as well as its long-range connections with other brain regions, have been functionally linked to specific behaviors, ranging from working memory to reward seeking. The efficacy of synaptic signaling in the PFC network is profundedly influenced by monoaminergic inputs via the activation of dopamine, adrenergic, or serotonin receptors. Stress hormones and neuropeptides also exert complex effects on the synaptic structure and function of PFC neurons. Dysregulation of PFC synaptic transmission is strongly linked to social deficits, affective disturbance, and memory loss in brain disorders, including autism, schizophrenia, depression, and Alzheimer's disease. Critical neural circuits, biological pathways, and molecular players that go awry in these mental illnesses have been revealed by integrated electrophysiological, optogenetic, biochemical, and transcriptomic studies of PFC. Novel epigenetic mechanism-based strategies are proposed as potential avenues of therapeutic intervention for PFC-involved diseases. This review provides an overview of PFC network organization and synaptic modulation, as well as the mechanisms linking PFC dysfunction to the pathophysiology of neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. Insights from the preclinical studies offer the potential for discovering new medical treatments for human patients with these brain disorders.

79 citations


Journal ArticleDOI
19 Aug 2021-Cell
TL;DR: In this article, the authors used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration.

54 citations


Journal ArticleDOI
TL;DR: In this paper, the authors review the manifold effects of specialized pro-resolving lipid mediators (SPMs) on modulation of astrocytes and oligodendrocyte, along with the mechanisms through which they either inhibit inflammatory pathways or induce the activation of protective ones.
Abstract: Astrocytes and oligodendrocytes are known to play critical roles in the central nervous system development, homeostasis and response to injury. In addition to their well-defined functions in synaptic signaling, blood-brain barrier control and myelination, it is now becoming clear that both glial cells also actively produce a wide range of immune-regulatory factors and engage in an intricate communication with neurons, microglia or with infiltrated immune cells, thus taking a center stage in both inflammation and resolution processes occurring within the brain. Resolution of inflammation is operated by the superfamily of specialized pro-resolving lipid mediators (SPMs), that include lipoxins, resolvins, protectins and maresins, and that altogether activate a series of cellular and molecular events that lead to spontaneous regression of inflammatory processes and restoration of tissue homeostasis. Here, we review the manifold effects of SPMs on modulation of astrocytes and oligodendrocytes, along with the mechanisms through which they either inhibit inflammatory pathways or induce the activation of protective ones. Furthermore, the possible role of SPMs in modulating the cross-talk between microglia, astrocytes and oligodendrocytes is also summarized. This SPM-mediated mechanism uncovers novel pathways of immune regulation in the brain that could be further exploited to control neuroinflammation and neurodegeneration.

31 citations


Journal ArticleDOI
Yayan Luo1, Yang Yu1, Minling Zhang1, Hongbo He1, Ni Fan1 
TL;DR: It is found that chronic in vivo exposure to ketamine for 28 days led to decreased expression of the glutamate receptor subunit and synaptic protein expression and deficits in LTP, synaptic transmission, and cognition, and inhibition of CaMKIIβ-ERK1/2-CREB/NF-κB signaling may mediate chronic ketamine use-associated cognitive impairments by restraining synaptic signaling.
Abstract: The discovery of the rapid antidepressant effects of ketamine has arguably been the most important advance in depression treatment. Recently, it was reported that repeated long-term ketamine administration is effective in preventing relapse of depression, which may broaden the clinical use of ketamine. However, long-term treatment with ketamine produces cognitive impairments, and the underlying molecular mechanisms for these impairments are largely unknown. Here, we found that chronic in vivo exposure to ketamine for 28 days led to decreased expression of the glutamate receptor subunits GluA1, GluA2, GluN2A, and GluN2B; decreased expression of the synaptic proteins Syn and PSD-95; decreased dendrite spine density; impairments in long-term potentiation (LTP) and synaptic transmission in the hippocampal CA1 area; and deterioration of learning and memory in mice. Furthermore, the reduced glutamate receptor subunit and synaptic protein expression and the LTP deficits were still observed on day 28 after the last injection of ketamine. We found that the expression and phosphorylation of CaMKIIβ, ERK1/2, CREB, and NF-κB were inhibited by ketamine. The reductions in glutamate receptor subunit expression and dendritic spine density and the deficits in LTP, synaptic transmission, and cognition were alleviated by overexpression of CaMKIIβ. Our study indicates that inhibition of CaMKIIβ-ERK1/2-CREB/NF-κB signaling may mediate chronic ketamine use-associated cognitive impairments by restraining synaptic signaling. Hypofunction of the glutamatergic system might be the underlying mechanism accounting for chronic ketamine use-associated cognitive impairments. Our findings may suggest possible strategies to alleviate ketamine use-associated cognitive deficits and broaden the clinical use of ketamine in depression treatment.

30 citations


Journal ArticleDOI
TL;DR: In this article, the authors report bi-directional changes in depression-related behaviors after genetic disruption of neuronal tRNA cytosine methylation, including conditional ablation and transgene-derived overexpression of Nsun2 in the mouse prefrontal cortex (PFC).
Abstract: Epitranscriptomic mechanisms linking tRNA function and the brain proteome to cognition and complex behaviors are not well described. Here, we report bi-directional changes in depression-related behaviors after genetic disruption of neuronal tRNA cytosine methylation, including conditional ablation and transgene-derived overexpression of Nsun2 in the mouse prefrontal cortex (PFC). Neuronal Nsun2-deficiency was associated with a decrease in tRNA m5C levels, resulting in deficits in expression of 70% of tRNAGly isodecoders. Altogether, 1488/5820 proteins changed upon neuronal Nsun2-deficiency, in conjunction with glycine codon-specific defects in translational efficiencies. Loss of Gly-rich proteins critical for glutamatergic neurotransmission was associated with impaired synaptic signaling at PFC pyramidal neurons and defective contextual fear memory. Changes in the neuronal translatome were also associated with a 146% increase in glycine biosynthesis. These findings highlight the methylation sensitivity of glycinergic tRNAs in the adult PFC. Furthermore, they link synaptic plasticity and complex behaviors to epitranscriptomic modifications of cognate tRNAs and the proteomic homeostasis associated with specific amino acids.

28 citations


Journal ArticleDOI
01 Aug 2021
TL;DR: Evidence of local adaptation in the high‐altitude population at or near 303 known genes and several unannotated regions is found, suggesting that, beyond adapting via a beneficial mutation in one single gene, adaptation to high altitude in rhesus macaques is polygenic and spread across numerous important biological systems.
Abstract: When natural populations split and migrate to different environments, they may experience different selection pressures that can lead to local adaptation. To capture the genomic patterns of a local selective sweep, we develop XP-nSL, a genomic scan for local adaptation that compares haplotype patterns between two populations. We show that XP-nSL has power to detect ongoing and recently completed hard and soft sweeps, and we then apply this statistic to search for evidence of adaptation to high altitude in rhesus macaques. We analyze the whole genomes of 23 wild rhesus macaques captured at high altitude (mean altitude > 4000 m above sea level) to 22 wild rhesus macaques captured at low altitude (mean altitude < 500 m above sea level) and find evidence of local adaptation in the high-altitude population at or near 303 known genes and several unannotated regions. We find the strongest signal for adaptation at EGLN1, a classic target for convergent evolution in several species living in low oxygen environments. Furthermore, many of the 303 genes are involved in processes related to hypoxia, regulation of ROS, DNA damage repair, synaptic signaling, and metabolism. These results suggest that, beyond adapting via a beneficial mutation in one single gene, adaptation to high altitude in rhesus macaques is polygenic and spread across numerous important biological systems.

26 citations


Journal ArticleDOI
TL;DR: This paper develops a comprehensive channel model of the tripartite synapse encompassing a three-dimensional, finite-size spatial models of the synaptic cleft, molecule uptake at the presynaptic neuron and at glial cells, reversible binding to individual receptors at the postsynaptic neuron, and spillover to the extrasynaptic space.
Abstract: In Diffusive Molecular Communication (DMC), information is transmitted by diffusing molecules. Synaptic signaling, as a natural implementation of this paradigm, encompasses functional components that, once understood, can facilitate the development of synthetic DMC systems. To unleash this potential, however, a thorough understanding of the synaptic communication channel based on biophysical principles is needed. Since synaptic transmission critically depends also on non-neural cells, such understanding requires the consideration of the so-called tripartite synapse. In this paper, we develop a comprehensive channel model of the tripartite synapse encompassing a three-dimensional, finite-size spatial model of the synaptic cleft, molecule uptake at the presynaptic neuron and at glial cells, reversible binding to individual receptors at the postsynaptic neuron, and spillover to the extrasynaptic space. Based on this model, we derive analytical time domain expressions for the channel impulse response (CIR) of the synaptic DMC system and for the number of molecules taken up at the presynaptic neuron and at glial cells, respectively. These expressions provide insight into the impact of macroscopic physical channel parameters on the decay rate of the CIR and the reuptake rate, and reveal fundamental limits for synaptic signal transmission induced by chemical reaction kinetics and the channel geometry. Adapted to realistic parameters, our model produces plausible results when compared to previous experimental and simulation studies and we provide results from particle-based computer simulations to further validate the analytical model. The proposed comprehensive channel model admits a wide range of synaptic configurations making it suitable for the investigation of many practically relevant questions, such as the impact of glial cell uptake and spillover on signal transmission in the tripartite synapse.

24 citations


Journal ArticleDOI
TL;DR: In this article, the authors use generative network modeling to provide a computational framework for understanding neurodevelopmental diversity, which is an emergent property of a generative wiring equation that optimizes its connectivity.
Abstract: The formation of large-scale brain networks, and their continual refinement, represent crucial developmental processes that can drive individual differences in cognition and which are associated with multiple neurodevelopmental conditions. But how does this organization arise, and what mechanisms drive diversity in organization? We use generative network modeling to provide a computational framework for understanding neurodevelopmental diversity. Within this framework macroscopic brain organization, complete with spatial embedding of its organization, is an emergent property of a generative wiring equation that optimizes its connectivity by renegotiating its biological costs and topological values continuously over time. The rules that govern these iterative wiring properties are controlled by a set of tightly framed parameters, with subtle differences in these parameters steering network growth towards different neurodiverse outcomes. Regional expression of genes associated with the simulations converge on biological processes and cellular components predominantly involved in synaptic signaling, neuronal projection, catabolic intracellular processes and protein transport. Together, this provides a unifying computational framework for conceptualizing the mechanisms and diversity in neurodevelopment, capable of integrating different levels of analysis—from genes to cognition. The formation of large-scale brain networks represents crucial developmental processes that can drive individual differences in cognition and which are associated with multiple neurodevelopmental conditions. Here, the authors use generative network modelling to provide a computational framework for understanding neurodevelopmental diversity.

21 citations



Journal ArticleDOI
TL;DR: In this article, the authors demonstrate in the physiologically aged, senescent mouse brain that scanning ultrasound combined with microbubbles (SUS+MB), by transiently opening the blood-brain barrier, fully restores long-term potentiation (LTP) induction in the dentate gyrus of the hippocampus.
Abstract: Advanced physiological aging is associated with impaired cognitive performance and the inability to induce long-term potentiation (LTP), an electrophysiological correlate of memory. Here, we demonstrate in the physiologically aged, senescent mouse brain that scanning ultrasound combined with microbubbles (SUS+MB), by transiently opening the blood-brain barrier, fully restores LTP induction in the dentate gyrus of the hippocampus. Intriguingly, SUS treatment without microbubbles (SUSonly), i.e., without the uptake of blood-borne factors, proved even more effective, not only restoring LTP, but also ameliorating the spatial learning deficits of the aged mice. This functional improvement is accompanied by an altered milieu of the aged hippocampus, including a lower density of perineuronal nets, increased neurogenesis, and synaptic signaling, which collectively results in improved spatial learning. We therefore conclude that therapeutic ultrasound is a non-invasive, pleiotropic modality that may enhance cognition in elderly humans.

Journal ArticleDOI
TL;DR: In this article, the authors integrate a large number of expert-compiled and well-established epilepsy- and ASD-associated genes in a multiplex network, where one layer is connected through protein-protein interaction (PPI) and the other layer through gene-phenotype associations.
Abstract: It is well established that epilepsy and autism spectrum disorder (ASD) commonly co-occur; however, the underlying biological mechanisms of the co-occurence from their genetic susceptibility are not well understood. Our aim in this study is to characterize genetic modules of subgroups of epilepsy and autism genes that have similar phenotypic manifestations and biological functions. We first integrate a large number of expert-compiled and well-established epilepsy- and ASD-associated genes in a multiplex network, where one layer is connected through protein-protein interaction (PPI) and the other layer through gene-phenotype associations. We identify two modules in the multiplex network, which are significantly enriched in genes associated with both epilepsy and autism as well as genes highly expressed in brain tissues. We find that the first module, which represents the Gene Ontology category of ion transmembrane transport, is more epilepsy-focused, while the second module, representing synaptic signaling, is more ASD-focused. However, because of their enrichment in common genes and association with both epilepsy and ASD phenotypes, these modules point to genetic etiologies and biological processes shared between specific subtypes of epilepsy and ASD. Finally, we use our analysis to prioritize new candidate genes for epilepsy (i.e. ANK2, CACNA1E, CACNA2D3, GRIA2, DLG4) for further validation. The analytical approaches in our study can be applied to similar studies in the future to investigate the genetic connections between different human diseases.

Journal ArticleDOI
18 Jan 2021-eLife
TL;DR: In this article, the amplitude of AMPA receptor-mediated excitatory postsynaptic currents at parallel fiber (PF) to PC synapses was larger in STAT3PKO mice than in wild-type (WT) littermates.
Abstract: Emotional memory processing engages a large neuronal network of brain regions including the cerebellum. However, the molecular and cellular mechanisms of the cerebellar cortex modulating the fear memory network are unclear. Here, we illustrate that synaptic signaling in cerebellar Purkinje cells (PCs) via STAT3 regulates long-term fear memory. Transcriptome analyses revealed that PC-specific STAT3 knockout (STAT3PKO) results in transcriptional changes that lead to an increase in the expression of glutamate receptors. The amplitude of AMPA receptor-mediated excitatory postsynaptic currents at parallel fiber (PF) to PC synapses was larger in STAT3PKO mice than in wild-type (WT) littermates. Fear conditioning induced long-term depression of PF-PC synapses in STAT3PKO mice while the same manipulation induced long-term potentiation in WT littermates. STAT3PKO mice showed an aberrantly enhanced long-term fear memory. Neuronal activity in fear-related regions increased in fear-conditioned STAT3PKO mice. Our data suggest that STAT3-dependent molecular regulation in PCs is indispensable for proper expression of fear memory.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the existence and stability of these microdomains in individual neurons in vitro and in vivo and demonstrate the consequence for GABAergic synaptic signaling: each interneuron produces a postsynaptic GABAA response with a unique reversal potential.
Abstract: Developmental, cellular, and subcellular variations in the direction of neuronal Cl- currents elicited by GABAA receptor activation have been frequently reported. We found a corresponding variance in the reversal potential (EGABA) for synapses originating from individual interneurons onto a single pyramidal cell. These findings suggest a corresponding variance in the cytoplasmic concentration of Cl- ([Cl-i]) in individual dendrites. We determined [Cl-]i in the murine hippocampus and cerebral cortex of both sexes by: 1) two-photon imaging of the Cl- sensitive, ratiometric fluorescent protein SuperClomeleon (sCLM); 2) Fluorescence Lifetime IMaging (FLIM) of the Cl- sensitive fluorophore MEQ; and 3) electrophysiological measurements of EGABA by pressure application of GABA and RuBi-GABA uncaging. Fluorometric and electrophysiological estimates of local [Cl-]i were highly correlated. [Cl-]i microdomains persisted after pharmacological inhibition of cation-chloride cotransporters (CCCs), but were progressively modified after inhibiting the polymerization of the anionic macromolecule actin. These methods collectively demonstrated stable [Cl-]i microdomains in individual neurons in vitro and in vivo and the role of immobile anions on its stability. Our results highlight the existence of functionally significant neuronal Cl- microdomains that modify the impact of GABAergic inputs. Significant Statement: Microdomains of varying chloride concentrations in the neuronal cytoplasm are a predictable consequence of the inhomogeneous distribution of anionic polymers such as actin, tubulin, and nucleic acids. Here, we demonstrate the existence and stability of these microdomains, as well as the consequence for GABAergic synaptic signaling: each interneuron produces a postsynaptic GABAA response with a unique reversal potential. In individual hippocampal pyramidal cells, the range of GABAA reversal potentials evoked by stimulating different interneurons was over 20 mV. Some interneurons generated postsynaptic responses in pyramidal cells that reversed at potentials beyond what would be considered purely inhibitory. Cytoplasmic chloride microdomains enable each pyramidal cell to maintain a compendium of unique postsynaptic responses to the activity of individual interneurons.

Journal ArticleDOI
TL;DR: This work indicates that AVP signaling modulates circadian circuits in a manner influenced by sex, which provides new insight into sexual dimorphisms in the regulation of daily rhythms.

Journal ArticleDOI
TL;DR: In this article, the authors used whole-cell patch clamp electrophysiology to examine basal Caa GABAergic spontaneous inhibitory postsynaptic currents (sIPSC) and the effects of acute alcohol in both naive and alcohol dependent rats of both sexes.
Abstract: Aims Alcohol use disorder (AUD) is linked to hyperactivity of brain stress systems, leading to withdrawal states which drive relapse. AUD differs among the sexes, as men are more likely to have AUD than women, but women progress from casual use to binge and heavy alcohol use more quickly and are more likely to relapse into repetitive episodes of heavy drinking. In alcohol dependence animal models of AUD, the central amygdala (CeA) functions as a hub of stress and anxiety processing and gamma-Aminobutyric acid (GABA)ergic signaling within the CeA is involved in dependence-induced increases in alcohol consumption. We have shown dysregulation of CeA GABAergic synaptic signaling in alcohol dependence animal models, but previous studies have exclusively used males. Methods Here, we used whole-cell patch clamp electrophysiology to examine basal CeA GABAergic spontaneous inhibitory postsynaptic currents (sIPSC) and the effects of acute alcohol in both naive and alcohol dependent rats of both sexes. Results We found that sIPSC kinetics differ between females and males, as well as between naive and alcohol-dependent animals, with naive females having the fastest current kinetics. Additionally, we find differences in baseline current kinetics across estrous cycle stages. In contrast to the increase in sIPSC frequency routinely found in males, acute alcohol (11-88 mM) had no effect on sIPSCs in naive females, however the highest concentration of alcohol increased sIPSC frequency in dependent females. Conclusion These results provide important insight into sex differences in CeA neuronal function and dysregulation with alcohol dependence and highlight the need for sex-specific considerations in the development of effective AUD treatment.

Journal ArticleDOI
TL;DR: The regulator of G-protein signaling 14 (RGS14) is a multifunctional signaling protein that regulates post synaptic plasticity in neurons as mentioned in this paper, which is expressed in the brain regions essential for learning, memory, emotion, and stimulus-induced behaviors, including the basal ganglia, limbic system and cortex.
Abstract: The regulator of G-protein signaling 14 (RGS14) is a multifunctional signaling protein that regulates post synaptic plasticity in neurons. RGS14 is expressed in the brain regions essential for learning, memory, emotion, and stimulus-induced behaviors, including the basal ganglia, limbic system, and cortex. Behaviorally, RGS14 regulates spatial and object memory, female-specific responses to cued fear conditioning, and environmental- and psychostimulant-induced locomotion. At the cellular level, RGS14 acts as a scaffolding protein that integrates G protein, Ras/ERK, and calcium/calmodulin signaling pathways essential for spine plasticity and cell signaling, allowing RGS14 to naturally suppress long-term potentiation (LTP) and structural plasticity in hippocampal area CA2 pyramidal cells. Recent proteomics findings indicate that RGS14 also engages the actomyosin system in the brain, perhaps to impact spine morphogenesis. Of note, RGS14 is also a nucleocytoplasmic shuttling protein, where its role in the nucleus remains uncertain. Balanced nuclear import/export and dendritic spine localization are likely essential for RGS14 neuronal functions as a regulator of synaptic plasticity. Supporting this idea, human genetic variants disrupting RGS14 localization also disrupt RGS14’s effects on plasticity. This review will focus on the known and unexplored roles of RGS14 in cell signaling, physiology, disease and behavior.

Journal ArticleDOI
TL;DR: In this paper, the authors examined evidence revealing that astrocytes respond to dopamine and modulate information processing in the primary brain regions implicated in the mesolimbic dopamine system and have the potential to serve as a therapeutic target for interventions designed for dopamine pathologies.

Journal ArticleDOI
TL;DR: In this article, the authors used pre-miR-124 in wild-type (WT) MNs and anti-miRNA(miR)-124 in mSOD1 MNs to characterize the miRNA-124 pathological role.
Abstract: miRNA(miR)-124 is an important regulator of neurogenesis, but its upregulation in SOD1G93A motor neurons (mSOD1 MNs) was shown to associate with neurodegeneration and microglia activation. We used pre-miR-124 in wild-type (WT) MNs and anti-miR-124 in mSOD1 MNs to characterize the miR-124 pathological role. miR-124 overexpression in WT MNs produced a miRNA profile like that of mSOD1 MNs (high miR-125b; low miR-146a and miR-21), and similarly led to early apoptosis. Alterations in mSOD1 MNs were abrogated with anti-miR-124 and changes in their miRNAs mostly recapitulated by their secretome. Normalization of miR-124 levels in mSOD1 MNs prevented the dysregulation of neurite network, mitochondria dynamics, axonal transport, and synaptic signaling. Same alterations were observed in WT MNs after pre-miR-124 transfection. Secretome from mSOD1 MNs triggered spinal microglia activation, which was unno-ticed with that from anti-miR-124-modulated cells. Secretome from such modulated MNs, when added to SC organotypic cultures from mSOD1 mice in the early symptomatic stage, also coun-teracted the pathology associated to GFAP decrease, PSD-95 and CX3CL1-CX3CR1 signaling im-pairment, neuro-immune homeostatic imbalance, and enhanced miR-124 expression levels. Data suggest that miR-124 is implicated in MN degeneration and paracrine-mediated pathogenicity. We propose miR-124 as a new therapeutic target and a promising ALS biomarker in patient sub-populations.

Journal ArticleDOI
TL;DR: The functional roles of dopamine neuron glutamate cotransmission and their implications for therapeutic use are only recently emerging as mentioned in this paper, with the current body of evidence investigating the functions of dopamine neurons of the ventral midbrain that co-ransmit glutamate.
Abstract: Discovered just over 20 years ago, dopamine neurons have the ability to cotransmit both dopamine and glutamate. Yet, the functional roles of dopamine neuron glutamate cotransmission and their implications for therapeutic use are just emerging. This review article encompasses the current body of evidence investigating the functions of dopamine neurons of the ventral midbrain that cotransmit glutamate. Since its discovery in dopamine neuron cultures, further work in vivo confirmed dopamine neuron glutamate cotransmission across species. From there, growing interest has led to research related to neural functioning including roles in synaptic signaling, development, and behavior. Functional connectome mapping reveals robust connections in multiple forebrain regions to various cell types, most notably to cholinergic interneurons in both the medial shell of the nucleus accumbens and the lateral dorsal striatum. Glutamate markers in dopamine neurons reach peak levels during embryonic development and increase in response to various toxins, suggesting dopamine neuron glutamate cotransmission may serve neuroprotective roles. Findings from behavioral analyses reveal prominent roles for dopamine neuron glutamate cotransmission in responses to psychostimulants, in positive valence and cognitive systems and for subtle roles in negative valence systems. Insight into dopamine neuron glutamate cotransmission informs the pathophysiology of neuropsychiatric disorders such as addiction, schizophrenia and Parkinson Disease, with therapeutic implications.

Journal ArticleDOI
Yalan Xu1, Xiuyue Song1, Dong Wang1, Yin Wang1, Peifeng Li1, Jing Li1 
TL;DR: In this article, the authors review the findings of proteomic studies of chemical synapses in the brain, with special attention paid to the key players in synaptic signaling, i.e., the synaptic protein complexes and their post-translational modifications.
Abstract: Chemical synapses in the brain connect neurons to form neural circuits, providing the structural and functional bases for neural communication. Disrupted synaptic signaling is closely related to a variety of neurological and psychiatric disorders. In the past two decades, proteomics has blossomed as a versatile tool in biological and biomedical research, rendering a wealth of information toward decoding the molecular machinery of life. There is enormous interest in employing proteomic approaches for the study of synapses, and substantial progress has been made. Here, we review the findings of proteomic studies of chemical synapses in the brain, with special attention paid to the key players in synaptic signaling, i.e., the synaptic protein complexes and their post-translational modifications. Looking toward the future, we discuss the technological advances in proteomics such as data-independent acquisition mass spectrometry (DIA-MS), cross-linking in combination with mass spectrometry (CXMS), and proximity proteomics, along with their potential to untangle the mystery of how the brain functions at the molecular level. Last but not least, we introduce the newly developed synaptomic methods. These methods and their successful applications marked the beginnings of the synaptomics era.

Journal ArticleDOI
TL;DR: In this paper, the same actin regulatory mechanisms are required for hippocampal LTP and memory but, in females only, the engagement of both modulatory receptors such as TrkB and synaptic signaling intermediaries including Src and ERK1/2 requires neuron-derived estrogen and signaling through membrane-associated estrogen receptor α (ERα).
Abstract: Although sex differences in learning behaviors are well documented, sexual dimorphism in the synaptic processes of encoding is only recently appreciated. Studies in male rodents have built upon the discovery of long-term potentiation (LTP), and acceptance of this activity-dependent increase in synaptic strength as a mechanism of encoding, to identify synaptic receptors and signaling activities that coordinate the activity-dependent remodeling of the subsynaptic actin cytoskeleton that is critical for enduring potentiation and memory. These molecular substrates together with other features of LTP, as characterized in males, have provided an explanation for a range of memory phenomena including multiple stages of consolidation, the efficacy of spaced training, and the location of engrams at the level of individual synapses. In the present report, we summarize these findings and describe more recent results from our laboratories showing that in females the same actin regulatory mechanisms are required for hippocampal LTP and memory but, in females only, the engagement of both modulatory receptors such as TrkB and synaptic signaling intermediaries including Src and ERK1/2 requires neuron-derived estrogen and signaling through membrane-associated estrogen receptor α (ERα). Moreover, in association with the additional ERα involvement, females exhibit a higher threshold for hippocampal LTP and spatial learning. We propose that the distinct LTP threshold in females contributes to as yet unappreciated sex differences in information processing and features of learning and memory.

Journal ArticleDOI
TL;DR: For example, the authors employed Next-Generation RNA-sequencing (RNA-seq) followed by quantitative chromatin immunoprecipitation to investigate changes in gene expression and their regulation in adult male and female rats' dorsomedial prefrontal cortex (dmPFC) after a regimen of daily injection of morphine (5.0 mg/kg; 10 days).

Journal ArticleDOI
TL;DR: In this article, the authors performed social isolation on weaned pre-adolescent mice until adolescence and investigated these behaviors and PFC characteristics in adolescent mice and found that early life stress (ELS) induced social impairments in social novelty, social interaction, and social preference.
Abstract: Early life stress (ELS), such as abuse, neglect, and maltreatment, exhibits a strong impact on the brain and mental development of children. However, it is not fully understood how ELS affects social behaviors and social-associated behaviors as well as developing prefrontal cortex (PFC). In this study, we performed social isolation on weaned pre-adolescent mice until adolescence and investigated these behaviors and PFC characteristics in adolescent mice. We found the ELS induced social impairments in social novelty, social interaction, and social preference in adolescent mice. We also observed increases of anxiety-like behaviors in ELS mice. In histological analysis, we found a reduced number of neurons and an increased number of microglia in the PFC of ELS mice. To identify the gene associated with behavioral and histological features, we analyzed transcriptome in the PFC of ELS mice and identified 15 differentially expressed genes involved in transcriptional regulation, stress, and synaptic signaling. Our study demonstrates that ELS influences social behaviors, anxiety-like behaviors through cytoarchitectural and transcriptomic alterations in the PFC of adolescent mice.

Journal ArticleDOI
01 Jan 2021
TL;DR: Network analysis reveals potential interactions of insecticides, cannabinoids, and seizure at a functional level in cannabis.
Abstract: Medical cannabis represents a potential route of pesticide exposure to susceptible populations. We compared the qualifying conditions for medical use and pesticide testing requirements of cannabis in 33 states and Washington, D.C. Movement disorders were the most common neurological category of qualifying conditions, including epilepsy, certain symptoms of multiple sclerosis, Parkinson's Disease, and any cause of symptoms leading to seizures or spasticity. Different approaches of pesticide regulation were implemented in cannabis and cannabis-derived products. Six states imposed the strictest U.S. EPA tolerances (i.e. maximum residue levels) for food commodities on up to 400 pesticidal active ingredients in cannabis, while pesticide testing was optional in three states. Dimethomorph showed the largest variation in action levels, ranging from 0.1 to 60 ppm in 5 states. We evaluated the potential connections between insecticides, cannabinoids, and seizure using the Comparative Toxicogenomics Database. Twenty-two insecticides, two cannabinoids, and 63 genes were associated with 674 computationally generated chemical-gene-phenotype-disease (CGPD) tetramer constructs. Notable functional clusters included oxidation-reduction process (183 CGPD-tetramers), synaptic signaling pathways (151), and neuropeptide hormone activity (46). Cholinergic, dopaminergic, and retrograde endocannabinoid signaling pathways were linked to 10 genetic variants of epilepsy patients. Further research is needed to assess human health risk of cannabinoids and pesticides in support of a national standard for cannabis pesticide regulations.


Journal ArticleDOI
02 Jun 2021
TL;DR: In this paper, the authors developed a 3D reaction-diffusion model to investigate the role of MERCs in regulating Ca2+ and ATP dynamics in neurons, and showed that a combination of MERC linkage and mitochondria size is necessary for optimal ATP production in the cytosol.
Abstract: Spatiotemporal compartmentation of calcium dynamics is critical for neuronal function, particularly in postsynaptic spines. This exquisite level of Ca2+ compartmentalization is achieved through the storage and release of Ca2+ from various intracellular organelles particularly the endoplasmic reticulum (ER) and the mitochondria. Mitochondria and ER are established storage organelles controlling Ca2+ dynamics in neurons. Mitochondria also generate a majority of energy used within postsynaptic spines to support the downstream events associated with neuronal stimulus. Recently, high resolution microscopy has unveiled direct contact sites between the ER and the mitochondria (MERCs), which directly channel Ca2+ release from the ER into the mitochondrial membrane. In this study, we develop a computational 3D reaction-diffusion model to investigate the role of MERCs in regulating Ca2+ and ATP dynamics. This spatiotemporal model accounts for Ca2+ oscillations initiated by glutamate stimulus of metabotropic and ionotropic glutamate receptors and Ca2+ changes in four different compartments: cytosol, ER, mitochondria, and the MERC microdomain. Our simulations predict that the organization of these organelles and inter-organellar contact sites play a key role in modulating Ca2+ and ATP dynamics. We further show that the crosstalk between geometry (mitochondria and MERC) and metabolic parameters (cytosolic ATP hydrolysis, ATP generation) influences the neuronal energy state. Our findings shed light on the importance of organelle interactions in predicting Ca2+ dynamics in synaptic signaling. Overall, our model predicts that a combination of MERC linkage and mitochondria size is necessary for optimal ATP production in the cytosol.

Journal ArticleDOI
20 Apr 2021
TL;DR: The current state-of-the-art in MRI-based calcium sensors is reviewed, focusing on fundamental aspects of sensor performance, in vivo applications, and challenges related to sensitivity.
Abstract: Calcium ions represent one of the key second messengers accompanying neural activity and synaptic signaling. Accordingly, dynamic imaging of calcium fluctuations in living organisms represents a cornerstone technology for discovering neural mechanisms that underlie memory, determine behavior, and modulate emotional states as well as how these mechanisms are perturbed by neurological disease and brain injury. While optical technologies are well established for high resolution imaging of calcium dynamics, physical limits on light penetration hinder their application for whole-brain imaging in intact vertebrates. Unlike optics, magnetic resonance imaging (MRI) enables noninvasive large-scale imaging across vertebrates of all sizes. This has motivated the development of several sensors that leverage innovative physicochemical mechanisms to sensitize MRI contrast to intracellular and extracellular changes in calcium. Here, we review the current state-of-the-art in MRI-based calcium sensors, focusing on fundamental aspects of sensor performance, in vivo applications, and challenges related to sensitivity. We also highlight how innovations at the intersection of reporter gene technology and gene delivery open potential opportunities for mapping calcium activity in genetically targeted cells, complementing the benefits of small molecule probes and nanoparticle sensors.

Journal ArticleDOI
TL;DR: In this paper, the authors showed that APOE4-induced synaptic dysfunction leads to a significant decrease in global protein synthesis in primary cortical neurons and synaptoneurosomes of Sprague Dawley (SD) rats.
Abstract: Apolipoprotein E (APOE), one of the primary lipoproteins in the brain has three isoforms in humans, APOE2, APOE3, and APOE4. APOE4 is the most well-established risk factor increasing the predisposition for Alzheimer's disease (AD). The presence of the APOE4 allele alone is shown to cause synaptic defects in neurons and recent studies have identified multiple pathways directly influenced by APOE4. However, the mechanisms underlying APOE4-induced synaptic dysfunction remain elusive. Here, we report that the acute exposure of primary cortical neurons or synaptoneurosomes to APOE4 leads to a significant decrease in global protein synthesis. Primary cortical neurons were derived from male and female embryos of Sprague Dawley (SD) rats or C57BL/6J mice. Synaptoneurosomes were prepared from P30 male SD rats. APOE4 treatment also abrogates the NMDA-mediated translation response indicating an alteration of synaptic signaling. Importantly, we demonstrate that both APOE3 and APOE4 generate a distinct translation response which is closely linked to their respective calcium signature. Acute exposure of neurons to APOE3 causes a short burst of calcium through NMDA receptors (NMDARs) leading to an initial decrease in protein synthesis which quickly recovers. Contrarily, APOE4 leads to a sustained increase in calcium levels by activating both NMDARs and L-type voltage-gated calcium channels (L-VGCCs), thereby causing sustained translation inhibition through eukaryotic translation elongation factor 2 (eEF2) phosphorylation, which in turn disrupts the NMDAR response. Thus, we show that APOE4 affects basal and activity-mediated protein synthesis responses in neurons by affecting calcium homeostasis.SIGNIFICANCE STATEMENT Defective protein synthesis has been shown as an early defect in familial Alzheimer's disease (AD). However, this has not been studied in the context of sporadic AD, which constitutes the majority of cases. In our study, we show that Apolipoprotein E4 (APOE4), the predominant risk factor for AD, inhibits global protein synthesis in neurons. APOE4 also affects NMDA activity-mediated protein synthesis response, thus inhibiting synaptic translation. We also show that the defective protein synthesis mediated by APOE4 is closely linked to the perturbation of calcium homeostasis caused by APOE4 in neurons. Thus, we propose the dysregulation of protein synthesis as one of the possible molecular mechanisms to explain APOE4-mediated synaptic and cognitive defects. Hence, the study not only suggests an explanation for the APOE4-mediated predisposition to AD, it also bridges the gap in understanding APOE4-mediated pathology.