scispace - formally typeset
Search or ask a question
Institution

Boise State University

EducationBoise, Idaho, United States
About: Boise State University is a education organization based out in Boise, Idaho, United States. It is known for research contribution in the topics: Population & Computer science. The organization has 3698 authors who have published 8664 publications receiving 210163 citations. The organization is also known as: BSU & Boise State.


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that a gene × gene interaction between DRD2 and DRD4 is associated with the development of conduct disorder and adult antisocial behavior in males.
Abstract: Antisocial behaviors are complex polygenic phenotypes that are due to a multifactorial arrangement of genetic polymorphisms. Little empirical research, however, has been undertaken that examines gene × gene interactions in the etiology of conduct disorder and antisocial behavior. This study examined whether adolescent conduct disorder and adult antisocial behavior were related to the dopamine D2 receptor polymorphism (DRD2) and the dopamine D4 receptor polymorphism (DRD4). A sample of 872 male participants from the National Longitudinal Study of Adolescent Health (Add Health) completed self-report questionnaires that tapped adolescent conduct disorder and adult antisocial behavior. DNA was genotyped for DRD2 and DRD4. Multivariate regression analysis revealed that neither DRD2 nor DRD4 had significant independent effects on conduct disorder or antisocial behavior. However, DRD2 interacted with DRD4 to predict variation in adolescent conduct disorder and in adult antisocial behavior. The results suggest that a gene × gene interaction between DRD2 and DRD4 is associated with the development of conduct disorder and adult antisocial behavior in males.

129 citations

Journal ArticleDOI
TL;DR: It is found that high spin Fe(3+) ions are substitutionally incorporated at the Zn(2+) in the tetrahedral-core sites and in pseudo-octahedral surface sites in ZnO, and its presence promoted the formation of additional single charged oxygen vacancies, zinc vacancies, and more oxygen-ended polar terminations at the nanoparticle surface.
Abstract: The actual role of transition metals like iron in the room temperature ferromagnetism (RTFM) of Fe doped ZnO nanoparticles is still an unsolved problem. While some studies concluded that the Fe ions participate in the magnetic interaction, others in contrast do not believe Fe to play a direct role in the magnetic exchange interaction. To contribute to the understanding of this issue, we have carefully investigated the structural, optical, vibrational and magnetic properties of sol-gel synthesized Zn1-xFexO (0 < x < 0.10) nanoparticles. No Fe(2+) was detected in any sample. We found that high spin Fe(3+) ions are substitutionally incorporated at the Zn(2+) in the tetrahedral-core sites and in pseudo-octahedral surface sites in ZnO. Superficial OH(-) was observed in all samples. For x ≤ 0.03, an increment in Fe doping concentration decreased a and c lattice parameters, average Zn-O bond length, average crystallite size and band gap; while it increased the degree of distortion and quadrupole splitting. Undoped ZnO nanoparticles exhibited very weak RTFM with a saturation magnetization (Ms) of ∼0.47 memu g(-1) and this value increased to ∼2.1 memu g(-1) for Zn0.99Fe0.01O. Very interestingly, the Ms for Zn0.99Fe0.01O and Zn0.97Fe0.03O increased by a factor of about ∼2.3 by increasing annealing for 1 h to 3 h. For x ≥ 0.05, ferrimagnetic disordered spinel ZnFe2O4 was formed and this phase was found to become more ordered with increasing annealing time. Fe does not contribute directly to the RTFM, but its presence promoted the formation of additional single charged oxygen vacancies, zinc vacancies, and more oxygen-ended polar terminations at the nanoparticle surface. These defects, which are mainly superficial, altered the electronic structure and are considered as the main sources of the observed ferromagnetism.

129 citations

Journal ArticleDOI
TL;DR: This study seeks to describe the initial response of faculty to an effort to shift teaching norms, with a long-term goal of altering the culture around teaching and learning in STEM.
Abstract: Calls to improve student learning and increase the number of science, technology, engineering, and math (STEM) college and university graduates assert the need for widespread adoption of evidence-based instructional practices in undergraduate STEM courses. For successful reforms to take hold and endure, it is likely that a significant shift in culture around teaching is needed. This study seeks to describe the initial response of faculty to an effort to shift teaching norms, with a long-term goal of altering the culture around teaching and learning in STEM. While the effort was envisioned and led at the institutional level, dialog about the proposed change and actions taken by faculty was emergent and supported within departments. Faculty identify a variety of barriers to proposed changes in teaching practice; however, faculty also identify a variety of drivers that might help the institution alter teaching and learning norms. Analysis of faculty responses reveals 18 categories of barriers and 15 categories of drivers in faculty responses. Many of the barrier and driver categories were present in each department’s responses; however, the distribution and frequency with which they appear reveals departmental differences that are important for moving forward with strategies to change teaching practice. Addressing faculty’s barriers to change is essential, but identifying and leveraging faculty’s drivers for the change is potentially equally important in efforts to catalyze changes that are supported or constrained by the local context. Further, the collection of faculty perspectives opens a dialog around the current and future state of teaching, an important step in laying the groundwork for change. Departmental differences in barriers and drivers make clear the importance of “knowing” the local contexts so strategies adopted by departments can be appropriately tailored. Results are discussed in light of what kind of strategies might be employed to effect changes in STEM education.

129 citations

Journal ArticleDOI
TL;DR: In this paper, pressure-temperature-time (P-T-t) conditions of metamorphism have been determined in the Annapurna region of central Nepal that place new constraints on the structural and tectonic evolution of the Himalayan orogenic wedge.
Abstract: Pressure-temperature-time (P-T-t) conditions of metamorphism have been determined in the Annapurna region of central Nepal that place new constraints on the structural and tectonic evolution of the Himalayan orogenic wedge. Peak P-T conditions increase structurally upward: ∼525 °C and 8 kbar in the Lesser Himalayan sequence, 650 °C and 12 kbar at the base of the Greater Himalayan sequence across the Main Central thrust, 750 °C and 12 kbar in the middle of the Greater Himalayan sequence, and 775 °C and 13 kbar near the top of the Greater Himalayan sequence. Metamorphic monazite ages in the Greater Himalayan sequence also increase structurally upward: 16–21 Ma for subsolidus growth at the base of the Greater Himalayan sequence to ∼25 Ma for peak-T metamorphism and anatexis near the top of the Greater Himalayan sequence. These ages are several million years older than at equivalent structural levels at Langtang, ∼200 km to the east. The P-T-t data recommend reinterpretation of the Bhanuwa fault within the Greater Himalayan sequence as a thrust, and the presence of a different thrust structurally above the Bhanuwa thrust, here named the Sinuwa thrust. The new data are consistent with progressive stacking of tectonic slices, with calculated overthrust rates that are consistent with some (but not all) models that presume ∼2 cm/yr convergence across the Himalaya since 25 Ma. Despite differences in absolute ages, similarities among the chemical systematics of monazite, peak P-T conditions, and overthrust rates calculated for Annapurna when compared to Langtang imply that the broad geodynamics in one part of an orogen can be realistically extrapolated within a few hundred kilometers, although the timing and duration of movement on discrete thrust surfaces may differ.

128 citations

01 Jan 2011
TL;DR: A review of 188 peer reviewed journal articles and conference papers with “YouTube” in the title that were published between 2006 and 2009 revealed that the literature emerged from multiple academic disciplines.
Abstract: YouTube has grown to become the largest and most highly visited online video-sharing service, and interest in the educational use of YouTube has become apparent. Paralleling the rise of academic interest in YouTube is the emergence of YouTube scholarship. This article presents the results of a review of 188 peer reviewed journal articles and conference papers with “YouTube” in the title that were published between 2006 and 2009. Four questions were answered through the review of YouTube literature: (1) What is the overall distribution of publication activity for refereed journal articles and conference papers with "YouTube" in the title? (2) How are publications with "YouTube" in the title distributed across academic disciplines? (3) What have scholars written about instructional methodologies involving YouTube in a sample of literature containing "YouTube" in the title? (4) What have scholars reported about the results of studies involving YouTube in a sample of literature containing "YouTube" in the title? An analysis of the publications revealed that the literature emerged from multiple academic disciplines. The sample of literature included 39 articles and papers describing methods for teaching with YouTube. A total of 99 articles and papers containing the results of research studies were identified and categorized. This literature review is particularly relevant to those online educators who are interested in learning what scholars from their own academic disciplines are writing about YouTube. An emphasis is placed on trends in teaching and research discussed in the sampled literature.

128 citations


Authors

Showing all 3902 results

NameH-indexPapersCitations
Jeffrey G. Andrews11056263334
Zhu Han109140748725
Brian R. Flay8932526390
Jeffrey W. Elam8343524543
Pramod K. Varshney7989430834
Scott Fendorf7924421035
Gregory F. Ball7634221193
Yan Wang72125330710
David C. Dunand7252719212
Juan Carlos Diaz-Velez6433414252
Michael K. Lindell6218619865
Matthew J. Kohn6216413741
Maged Elkashlan6129414736
Bernard Yurke5824217897
Miguel Ferrer5847811560
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

92% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

University of Texas at Austin
206.2K papers, 9M citations

90% related

Texas A&M University
164.3K papers, 5.7M citations

90% related

University of New Mexico
64.7K papers, 2.5M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202370
2022210
2021763
2020695
2019620
2018637