scispace - formally typeset
Search or ask a question
Institution

Boise State University

EducationBoise, Idaho, United States
About: Boise State University is a education organization based out in Boise, Idaho, United States. It is known for research contribution in the topics: Population & Computer science. The organization has 3698 authors who have published 8664 publications receiving 210163 citations. The organization is also known as: BSU & Boise State.


Papers
More filters
Journal ArticleDOI
TL;DR: Titanite grains from ~800°C gneisses of the c. 6km thick Greater Himalayan Sequence of central Nepal were analyzed for Zr-in-titanite temperatures and U-Pb ages to investigate the formation and evolution of a former weak mid-crustal channel in the Himalaya as discussed by the authors.

115 citations

Journal ArticleDOI
TL;DR: Current research connecting PD and inflammatory response is examined, finding mounting evidence implicates enhanced inflammatory response in the development and progression of PD pathology.
Abstract: Parkinson’s disease (PD) is the first and second most prevalent motor and neurodegenerative disease, respectively. The clinical symptoms of PD result from a loss of midbrain dopaminergic (DA) neurons. However, the molecular cause of DA neuron loss remains elusive. Mounting evidence implicates enhanced inflammatory response in the development and progression of PD pathology. This review examines current research connecting PD and inflammatory response.

115 citations

Journal ArticleDOI
TL;DR: It is shown that for an arbitrary small scatterer, the cross terms of scattered waves give an unphysical wave with an arrival time that is independent of the source position, and an alternative derivation of the generalized optical theorem is constituted.
Abstract: The extraction of the Green's function by cross correlation of waves recorded at two receivers nowadays finds much application. We show that for an arbitrary small scatterer, the cross terms of scattered waves give an unphysical wave with an arrival time that is independent of the source position. This constitutes an apparent inconsistency because theory predicts that such spurious arrivals do not arise, after integration over a complete source aperture. This puzzling inconsistency can be resolved for an arbitrary scatterer by integrating the contribution of all sources in the stationary phase approximation to show that the stationary phase contributions to the source integral cancel the spurious arrival by virtue of the generalized optical theorem. This work constitutes an alternative derivation of this theorem. When the source aperture is incomplete, the spurious arrival is not canceled and could be misinterpreted to be part of the Green's function. We give an example of how spurious arrivals provide information about the medium complementary to that given by the direct and scattered waves; the spurious waves can thus potentially be used to better constrain the medium.

115 citations

Journal ArticleDOI
TL;DR: The study indicated that mobile AR artifact creation with peer discussion tended to better promote the componential competencies of technological pedagogical knowledge (TPK) and the integrative development of technologicalpedagogical content knowledge ( TPACK), whereas mobile media artifact viewing withpeer discussion seemed to better support the content knowledge(CK) development.
Abstract: This exploratory study examined the effectiveness of smartphone-based, AR artifact creation and other mobile collaborative learning activities in reinforcing the technological pedagogical content knowledge (TPACK) of pre-service teachers. Adopting a mixed-method research design, the study indicated that mobile AR artifact creation with peer discussion tended to better promote the componential competencies of technological pedagogical knowledge (TPK) and the integrative development of technological pedagogical content knowledge (TPACK), whereas mobile media artifact viewing with peer discussion seemed to better support the content knowledge (CK) development.

115 citations

Journal ArticleDOI
TL;DR: Data suggest that the activation of caspases and cleavage of cellular proteins such as GFAP may contribute to astrocyte injury and damage in the AD brain.
Abstract: Recent studies demonstrate roles for activation of caspases and cleavage of cellular proteins within neurons of the Alzheimer's disease (AD) brain. To determine whether a similar role for caspases also occurs within glial cells in AD, we designed a site-directed caspase-cleavage antibody specific to glial fibrillary acidic protein (GFAP), a cytoskeleton protein specifically expressed in astrocytes. In vitro characterization of this antibody using both a cell-free system and a cell model system of apoptosis demonstrated that the antibody (termed GFAP caspase-cleavage product antibody or GFAP-CCP Ab) immunolabeled the predicted caspase-cleavage fragment, but not full-length GFAP, by Western blot analysis. To determine whether caspases cleave GFAP in vivo, tissue sections from control and AD brains were examined by immunohistochemistry using the GFAP-CCP Ab. Two prominent features of staining were evident: immunolabeling of degenerating astrocytes in proximity to blood vessels and staining within plaque-rich regions of the AD brain. Furthermore, co-localization of the GFAP-CCP Ab and an antibody specific to active caspase-3 was demonstrated within damaged astrocytes of the AD brain. These data suggest that the activation of caspases and cleavage of cellular proteins such as GFAP may contribute to astrocyte injury and damage in the AD brain.

114 citations


Authors

Showing all 3902 results

NameH-indexPapersCitations
Jeffrey G. Andrews11056263334
Zhu Han109140748725
Brian R. Flay8932526390
Jeffrey W. Elam8343524543
Pramod K. Varshney7989430834
Scott Fendorf7924421035
Gregory F. Ball7634221193
Yan Wang72125330710
David C. Dunand7252719212
Juan Carlos Diaz-Velez6433414252
Michael K. Lindell6218619865
Matthew J. Kohn6216413741
Maged Elkashlan6129414736
Bernard Yurke5824217897
Miguel Ferrer5847811560
Network Information
Related Institutions (5)
Arizona State University
109.6K papers, 4.4M citations

92% related

Pennsylvania State University
196.8K papers, 8.3M citations

91% related

University of Texas at Austin
206.2K papers, 9M citations

90% related

Texas A&M University
164.3K papers, 5.7M citations

90% related

University of New Mexico
64.7K papers, 2.5M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202370
2022210
2021763
2020695
2019620
2018637