scispace - formally typeset
Search or ask a question
Institution

Howard Hughes Medical Institute

NonprofitChevy Chase, Maryland, United States
About: Howard Hughes Medical Institute is a nonprofit organization based out in Chevy Chase, Maryland, United States. It is known for research contribution in the topics: Gene & RNA. The organization has 20371 authors who have published 34677 publications receiving 5247143 citations. The organization is also known as: HHMI & hhmi.org.


Papers
More filters
Journal ArticleDOI
TL;DR: New information suggests that receptor signaling and desensitization are in reality two intimately linked aspects of receptor function and that mechanisms previously viewed as “desensitizing” with respect to one signaling pathway may be “activating”with respect to another.

1,066 citations

Journal ArticleDOI
30 Jun 2006-Cell
TL;DR: A tractable model of liver cancer is established, two oncogenes that cooperate by virtue of their coamplification in the same genomic locus are identified, and an efficient strategy for the annotation of human cancer genes is suggested.

1,064 citations

Journal ArticleDOI
12 Jul 2002-Science
TL;DR: Results provide direct evidence for CA3 NMDA receptor involvement in associative memory recall by generating and analyzing a genetically engineered mouse strain in which the N-methyl-d-asparate (NMDA) receptor gene is ablated specifically in the CA3 pyramidal cells of adult mice.
Abstract: Pattern completion, the ability to retrieve complete memories on the basis of incomplete sets of cues, is a crucial function of biological memory systems. The extensive recurrent connectivity of the CA3 area of hippocampus has led to suggestions that it might provide this function. We have tested this hypothesis by generating and analyzing a genetically engineered mouse strain in which the N-methyl-D-asparate (NMDA) receptor gene is ablated specifically in the CA3 pyramidal cells of adult mice. The mutant mice normally acquired and retrieved spatial reference memory in the Morris water maze, but they were impaired in retrieving this memory when presented with a fraction of the original cues. Similarly, hippocampal CA1 pyramidal cells in mutant mice displayed normal place-related activity in a full-cue environment but showed a reduction in activity upon partial cue removal. These results provide direct evidence for CA3 NMDA receptor involvement in associative memory recall.

1,064 citations

Journal ArticleDOI
12 May 1995-Science
TL;DR: The data suggest that neuroD may participate in the terminal differentiation step during vertebrate neuronal development and seems competent to bypass the normal inhibitory influences that usually prevent neurogenesis in ventral and lateral ectoderm.
Abstract: Basic helix-loop-helix (bHLH) proteins are instrumental in determining cell type during development. A bHLH protein, termed NeuroD, for neurogenic differentiation, has now been identified as a differentiation factor for neurogenesis because (i) it is expressed transiently in a subset of neurons in the central and peripheral nervous systems at the time of their terminal differentiation into mature neurons and (ii) ectopic expression of neuroD in Xenopus embryos causes premature differentiation of neuronal precursors. Furthermore, neuroD can convert presumptive epidermal cells into neurons and also act as a neuronal determination gene. However, unlike another previously identified proneural gene (XASH-3), neuroD seems competent to bypass the normal inhibitory influences that usually prevent neurogenesis in ventral and lateral ectoderm and is capable of converting most of the embryonic ectoderm into neurons. The data suggest that neuroD may participate in the terminal differentiation step during vertebrate neuronal development.

1,064 citations

Journal ArticleDOI
19 Jan 2012-Nature
TL;DR: The ability to restore pluripotency to somatic cells through the ectopic co-expression of reprogramming factors has created powerful new opportunities for modelling human diseases and offers hope for personalized regenerative cell therapies.
Abstract: The field of stem-cell biology has been catapulted forward by the startling development of reprogramming technology. The ability to restore pluripotency to somatic cells through the ectopic co-expression of reprogramming factors has created powerful new opportunities for modelling human diseases and offers hope for personalized regenerative cell therapies. While the field is racing ahead, some researchers are pausing to evaluate whether induced pluripotent stem cells are indeed the true equivalents of embryonic stem cells and whether subtle differences between these types of cell might affect their research applications and therapeutic potential.

1,064 citations


Authors

Showing all 20486 results

NameH-indexPapersCitations
Bert Vogelstein247757332094
Richard A. Flavell2311328205119
Steven A. Rosenberg2181204199262
Kenneth W. Kinzler215640243944
Robert J. Lefkowitz214860147995
Rob Knight2011061253207
Irving L. Weissman2011141172504
Ronald M. Evans199708166722
Francis S. Collins196743250787
Craig B. Thompson195557173172
Thomas C. Südhof191653118007
Joan Massagué189408149951
Stuart H. Orkin186715112182
John P. A. Ioannidis1851311193612
Eric R. Kandel184603113560
Network Information
Related Institutions (5)
Salk Institute for Biological Studies
13.1K papers, 1.6M citations

98% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

96% related

Broad Institute
11.6K papers, 1.5M citations

96% related

Scripps Research Institute
32.8K papers, 2.9M citations

95% related

Rockefeller University
32.9K papers, 2.9M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022228
20211,583
20201,587
20191,591
20181,394