scispace - formally typeset
Search or ask a question
Institution

Howard Hughes Medical Institute

NonprofitChevy Chase, Maryland, United States
About: Howard Hughes Medical Institute is a nonprofit organization based out in Chevy Chase, Maryland, United States. It is known for research contribution in the topics: Gene & RNA. The organization has 20371 authors who have published 34677 publications receiving 5247143 citations. The organization is also known as: HHMI & hhmi.org.


Papers
More filters
Journal ArticleDOI
28 Jun 2012-Nature
TL;DR: Results suggest that the emergence of KRAS mutations is a mediator of acquired resistance to EGFR blockade and that these mutations can be detected in a non-invasive manner, which explains why solid tumours develop resistance to targeted therapies in a highly reproducible fashion.
Abstract: Colorectal tumours that are wild type for KRAS are often sensitive to EGFR blockade, but almost always develop resistance within several months of initiating therapy. The mechanisms underlying this acquired resistance to anti-EGFR antibodies are largely unknown. This situation is in marked contrast to that of small-molecule targeted agents, such as inhibitors of ABL, EGFR, BRAF and MEK, in which mutations in the genes encoding the protein targets render the tumours resistant to the effects of the drugs. The simplest hypothesis to account for the development of resistance to EGFR blockade is that rare cells with KRAS mutations pre-exist at low levels in tumours with ostensibly wild-type KRAS genes. Although this hypothesis would seem readily testable, there is no evidence in pre-clinical models to support it, nor is there data from patients. To test this hypothesis, we determined whether mutant KRAS DNA could be detected in the circulation of 28 patients receiving monotherapy with panitumumab, a therapeutic anti-EGFR antibody. We found that 9 out of 24 (38%) patients whose tumours were initially KRAS wild type developed detectable mutations in KRAS in their sera, three of which developed multiple different KRAS mutations. The appearance of these mutations was very consistent, generally occurring between 5 and 6 months following treatment. Mathematical modelling indicated that the mutations were present in expanded subclones before the initiation of panitumumab treatment. These results suggest that the emergence of KRAS mutations is a mediator of acquired resistance to EGFR blockade and that these mutations can be detected in a non-invasive manner. They explain why solid tumours develop resistance to targeted therapies in a highly reproducible fashion.

1,555 citations

Journal ArticleDOI
09 Feb 1996-Cell
TL;DR: Cell and tissues from Stat1(-1-1) mice were unresponsive to IFN, but remained responsive to all other cytokines tested, indicating that STAT1 appears to be specific for IFN pathways that are essential for viability in the face of otherwise innocuous pathogens.

1,554 citations

Journal ArticleDOI
17 Feb 2000-Nature
TL;DR: The gene responsible for the hypochromic anaemia of the zebrafish mutant weissherbst is identified and Ferroportin1 function may be perturbed in mammalian disorders of iron deficiency or overload.
Abstract: Defects in iron absorption and utilization lead to iron deficiency and overload disorders. Adult mammals absorb iron through the duodenum, whereas embryos obtain iron through placental transport. Iron uptake from the intestinal lumen through the apical surface of polarized duodenal enterocytes is mediated by the divalent metal transporter, DMT1 (refs 1,2,3). A second transporter has been postulated to export iron across the basolateral surface to the circulation. Here we have used positional cloning to identify the gene responsible for the hypochromic anaemia of the zebrafish mutant weissherbst. The gene, ferroportin1, encodes a multiple-transmembrane domain protein, expressed in the yolk sac, that is a candidate for the elusive iron exporter. Zebrafish ferroportin1 is required for the transport of iron from maternally derived yolk stores to the circulation and functions as an iron exporter when expressed in Xenopus oocytes. Human Ferroportin1 is found at the basal surface of placental syncytiotrophoblasts, suggesting that it also transports iron from mother to embryo. Mammalian Ferroportin1 is expressed at the basolateral surface of duodenal enterocytes and could export cellular iron into the circulation. We propose that Ferroportin1 function may be perturbed in mammalian disorders of iron deficiency or overload.

1,553 citations

Journal ArticleDOI
15 Feb 1991-Science
TL;DR: The myoD gene converts many differentiated cell types into muscle, and the helix-loop-helix motif is responsible for dimerization, and, depending on itsDimerization partner, MyoD activity can be controlled.
Abstract: The myoD gene converts many differentiated cell types into muscle. MyoD is a member of the basic-helix-loop-helix family of proteins; this 68-amino acid domain in MyoD is necessary and sufficient for myogenesis. MyoD binds cooperatively to muscle-specific enhancers and activates transcription. The helix-loop-helix motif is responsible for dimerization, and, depending on its dimerization partner, MyoD activity can be controlled. MyoD senses and integrates many facets of cell state. MyoD is expressed only in skeletal muscle and its precursors; in nonmuscle cells myoD is repressed by specific genes. MyoD activates its own transcription; this may stabilize commitment to myogenesis.

1,551 citations

Journal ArticleDOI
10 Mar 1995-Cell
TL;DR: Genetic linkage between LQT3 and polymorphisms within SCN5A, the cardiac sodium channel gene, and single strand conformation polymorphism and DNA sequence analyses suggest that mutations in SCN 5A cause chromosome 3-linked LQt and indicate a likely cellular mechanism for this disorder.

1,550 citations


Authors

Showing all 20486 results

NameH-indexPapersCitations
Bert Vogelstein247757332094
Richard A. Flavell2311328205119
Steven A. Rosenberg2181204199262
Kenneth W. Kinzler215640243944
Robert J. Lefkowitz214860147995
Rob Knight2011061253207
Irving L. Weissman2011141172504
Ronald M. Evans199708166722
Francis S. Collins196743250787
Craig B. Thompson195557173172
Thomas C. Südhof191653118007
Joan Massagué189408149951
Stuart H. Orkin186715112182
John P. A. Ioannidis1851311193612
Eric R. Kandel184603113560
Network Information
Related Institutions (5)
Salk Institute for Biological Studies
13.1K papers, 1.6M citations

98% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

96% related

Broad Institute
11.6K papers, 1.5M citations

96% related

Scripps Research Institute
32.8K papers, 2.9M citations

95% related

Rockefeller University
32.9K papers, 2.9M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022228
20211,583
20201,587
20191,591
20181,394