scispace - formally typeset
Search or ask a question
Institution

Howard Hughes Medical Institute

NonprofitChevy Chase, Maryland, United States
About: Howard Hughes Medical Institute is a nonprofit organization based out in Chevy Chase, Maryland, United States. It is known for research contribution in the topics: Gene & RNA. The organization has 20371 authors who have published 34677 publications receiving 5247143 citations. The organization is also known as: HHMI & hhmi.org.


Papers
More filters
Journal ArticleDOI
24 May 1990-Nature
TL;DR: It is shown that four glycoproteins are integral components of the dystrophin complex and that the concentration of one of these is greatly reduced in DMD patients, suggesting the reduction in this glycoprotein may be one of the first stages of the molecular pathogenesis of muscular dystrophy.
Abstract: Dystrophin, the protein encoded by the Duchenne muscular dystrophy (DMD) gene, exists in a large oligomeric complex. We show here that four glycoproteins are integral components of the dystrophin complex and that the concentration of one of these is greatly reduced in DMD patients. Thus, the absence of dystrophin may lead to the loss of a dystrophin-associated glycoprotein, and the reduction in this glycoprotein may be one of the first stages of the molecular pathogenesis of muscular dystrophy.

981 citations

Journal ArticleDOI
TL;DR: The results indicate that circulating activated platelets and platelet–leukocyte/monocyte aggregates promote formation of atherosclerotic lesions.
Abstract: We studied whether circulating activated platelets and platelet-leukocyte aggregates cause the development of atherosclerotic lesions in apolipoprotein-E-deficient (Apoe(-/-)) mice. Circulating activated platelets bound to leukocytes, preferentially monocytes, to form platelet-monocyte/leukocyte aggregates. Activated platelets and platelet-leukocyte aggregates interacted with atherosclerotic lesions. The interactions of activated platelets with monocytes and atherosclerotic arteries led to delivery of the platelet-derived chemokines CCL5 (regulated on activation, normal T cell expressed and secreted, RANTES) and CXCL4 (platelet factor 4) to the monocyte surface and endothelium of atherosclerotic arteries. The presence of activated platelets promoted leukocyte binding of vascular cell adhesion molecule-1 (VCAM-1) and increased their adhesiveness to inflamed or atherosclerotic endothelium. Injection of activated wild-type, but not P-selectin-deficient, platelets increased monocyte arrest on the surface of atherosclerotic lesions and the size of atherosclerotic lesions in Apoe(-/-) mice. Our results indicate that circulating activated platelets and platelet-leukocyte/monocyte aggregates promote formation of atherosclerotic lesions. This role of activated platelets in atherosclerosis is attributed to platelet P-selectin-mediated delivery of platelet-derived proinflammatory factors to monocytes/leukocytes and the vessel wall.

980 citations

Journal ArticleDOI
TL;DR: This Review highlights emerging mechanisms of acquired resistance to contemporary therapies targeting the AR pathway, which fall into the three broad categories of restored AR signalling, AR bypass signalling and complete AR independence.
Abstract: During the past 10 years, preclinical studies implicating sustained androgen receptor (AR) signalling as the primary driver of castration-resistant prostate cancer (CRPC) have led to the development of novel agents targeting the AR pathway that are now in widespread clinical use. These drugs prolong the survival of patients with late-stage prostate cancer but are not curative. In this Review, we highlight emerging mechanisms of acquired resistance to these contemporary therapies, which fall into the three broad categories of restored AR signalling, AR bypass signalling and complete AR independence. This diverse range of resistance mechanisms presents new challenges for long-term disease control, which may be addressable through early use of combination therapies guided by recent insights from genomic landscape studies of CRPC.

980 citations

Journal ArticleDOI
22 Dec 1994-Nature
TL;DR: A novel protein kinase, called SAPK/ERK kinase-1 (SEK1), which is structurally related to the MAP kinase kinases (MEKs) and is a potent activator of the SAPKs in vitro and in vivo is identified.
Abstract: THE stress-activated protein kinases (SAPKs), which are distantly related to the MAP kinases, are the dominant c-Jun amino-termi-nal protein kinases activated in response to a variety of cellular stresses, including treatment with tumour-necrosis factor-α and interleukin-β (refs 1, 2). SAPK phosphorylation of c-Jun probably activates the c-Jun transactivation function3. SAPKs are part of a signal transduction cascade related to, but distinct from, the MAPK pathway1. We have now identified a novel protein kinase, called SAPK/ERK kinase-1 (SEK1), which is structurally related to the MAP kinase kinases (MEKs)4. SEK1 is a potent activator of the SAPKs in vitro and in vivo. An inactive SEK1 mutant blocks SAPK activation by extracellular stimuli without interfering with the MAPK pathway. Although alternative mechanisms of SAPK activation may exist, as an immediate upstream activator of the SAPKs, SEK1 further defines a signalling cascade that couples cellular stress agonists to the c-Jun transcription factor.

980 citations

Journal ArticleDOI
10 Sep 2015-Cell
TL;DR: New metabolic checkpoints for T cell activity are uncovered and it is demonstrated that metabolic reprogramming of tumor-reactive T cells can enhance anti-tumor T cell responses, illuminating new forms of immunotherapy.

980 citations


Authors

Showing all 20486 results

NameH-indexPapersCitations
Bert Vogelstein247757332094
Richard A. Flavell2311328205119
Steven A. Rosenberg2181204199262
Kenneth W. Kinzler215640243944
Robert J. Lefkowitz214860147995
Rob Knight2011061253207
Irving L. Weissman2011141172504
Ronald M. Evans199708166722
Francis S. Collins196743250787
Craig B. Thompson195557173172
Thomas C. Südhof191653118007
Joan Massagué189408149951
Stuart H. Orkin186715112182
John P. A. Ioannidis1851311193612
Eric R. Kandel184603113560
Network Information
Related Institutions (5)
Salk Institute for Biological Studies
13.1K papers, 1.6M citations

98% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

96% related

Broad Institute
11.6K papers, 1.5M citations

96% related

Scripps Research Institute
32.8K papers, 2.9M citations

95% related

Rockefeller University
32.9K papers, 2.9M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022228
20211,583
20201,587
20191,591
20181,394