scispace - formally typeset
Search or ask a question

Showing papers by "Howard Hughes Medical Institute published in 2000"


Journal ArticleDOI
16 Nov 2000-Nature
TL;DR: The p53 tumour-suppressor gene integrates numerous signals that control cell life and death, and the disruption of p53 has severe consequences when a highly connected node in the Internet breaks down.
Abstract: The p53 tumour-suppressor gene integrates numerous signals that control cell life and death. As when a highly connected node in the Internet breaks down, the disruption of p53 has severe consequences.

6,605 citations


PatentDOI
04 Oct 2000-Science
TL;DR: Serial analysis of gene expression (SAGE) should provide a broadly applicable means for the quantitative cataloging and comparison of expressed genes in a variety of normal, developmental, and disease states.
Abstract: PROBLEM TO BE SOLVED: To provide a method for preparing a short nucleotide sequence (tag) which is useful to identify a cDNA oligonucleotide and is derived from a restricted position in a mRNA or a cDNA. SOLUTION: This is the method of preparing a tag for identifying the cDNA oligonucleotide. The above method comprises preparing the cDNA oligonucleotide bearing 5' and 3' terminals, collecting cDNA fragments by cutting the cDNA oligonucleotide with a restriction enzyme at the first restriction endonuclease site, separating a cDNA oligonucleotide bearing 5' or 3' terminal and connecting an oligonucleotide linker to the isolated cDNA fragment bearing the cDNA oligonucleotide 5' or 3' terminal. Here, the oligonucleotide linker contains the recognition site of the second restriction endonuclease enzyme and the isolated cDNA fragment is cut with the second restriction endonuclease enzyme which cuts the cDNA fragment in a section separated from the recognition site to obtain the tag for identifying the cDNA oligonucleotide.

4,437 citations


Journal ArticleDOI
13 Oct 2000-Cell
TL;DR: This review will focus on the JNK group of MAP kinases, which are characterized by the sequence TEY and the two stress-activatedMAP kinases: p38 with the sequence TGY, and the c-Jun NH2-terminal kinases (JNK) with the sequences TPY.

4,228 citations


Journal ArticleDOI
11 Aug 2000-Science
TL;DR: The crystal structure of the large ribosomal subunit from Haloarcula marismortui is determined at 2.4 angstrom resolution, and it includes 2833 of the subunit's 3045 nucleotides and 27 of its 31 proteins.
Abstract: The large ribosomal subunit catalyzes peptide bond formation and binds initiation, termination, and elongation factors. We have determined the crystal structure of the large ribosomal subunit from Haloarcula marismortui at 2.4 angstrom resolution, and it includes 2833 of the subunit's 3045 nucleotides and 27 of its 31 proteins. The domains of its RNAs all have irregular shapes and fit together in the ribosome like the pieces of a three-dimensional jigsaw puzzle to form a large, monolithic structure. Proteins are abundant everywhere on its surface except in the active site where peptide bond formation occurs and where it contacts the small subunit. Most of the proteins stabilize the structure by interacting with several RNA domains, often using idiosyncratically folded extensions that reach into the subunit's interior.

3,266 citations


Journal ArticleDOI
TL;DR: The results on EEG data collected from normal and autistic subjects show that ICA can effectively detect, separate, and remove contamination from a wide variety of artifactual sources in EEG records with results comparing favorably with those obtained using regression and PCA methods.
Abstract: Eye movements, eye blinks, cardiac signals, muscle noise, and line noise present serious problems for electroencephalographic (EEG) interpretation and analysis when rejecting contaminated EEG segments results in an unacceptable data loss. Many methods have been proposed to remove artifacts from EEG recordings, especially those arising from eye movements and blinks. Often regression in the time or frequency domain is performed on parallel EEG and electrooculographic (EOG) recordings to derive parameters characterizing the appearance and spread of EOG artifacts in the EEG channels. Because EEG and ocular activity mix bidirectionally, regressing out eye artifacts inevitably involves subtracting relevant EEG signals from each record as well. Regression methods become even more problematic when a good regressing channel is not available for each artifact source, as in the case of muscle artifacts. Use of principal component analysis (PCA) has been proposed to remove eye artifacts from multichannel EEG. However, PCA cannot completely separate eye artifacts from brain signals, especially when they have comparable amplitudes. Here, we propose a new and generally applicable method for removing a wide variety of artifacts from EEG records based on blind source separation by independent component analysis (ICA). Our results on EEG data collected from normal and autistic subjects show that ICA can effectively detect, separate, and remove contamination from a wide variety of artifactual sources in EEG records with results comparing favorably with those obtained using regression and PCA methods. ICA can also be used to analyze blink-related brain activity.

2,944 citations


Journal ArticleDOI
08 Sep 2000-Science
TL;DR: Miniaturized assays that accommodate extremely low sample volumes and enable the rapid, simultaneous processing of thousands of proteins are developed to facilitate subsequent studies of protein function.
Abstract: Systematic efforts are currently under way to construct defined sets of cloned genes for high-throughput expression and purification of recombinant proteins To facilitate subsequent studies of protein function, we have developed miniaturized assays that accommodate extremely low sample volumes and enable the rapid, simultaneous processing of thousands of proteins A high-precision robot designed to manufacture complementary DNA microarrays was used to spot proteins onto chemically derivatized glass slides at extremely high spatial densities The proteins attached covalently to the slide surface yet retained their ability to interact specifically with other proteins, or with small molecules, in solution Three applications for protein microarrays were demonstrated: screening for protein-protein interactions, identifying the substrates of protein kinases, and identifying the protein targets of small molecules

2,940 citations


Journal ArticleDOI
17 Mar 2000-Science
TL;DR: Several synthetic planning principles for diversity-oriented synthesis and their role in the drug discovery process are presented in this review.
Abstract: Modern drug discovery often involves screening small molecules for their ability to bind to a preselected protein target. Target-oriented syntheses of these small molecules, individually or as collections (focused libraries), can be planned effectively with retrosynthetic analysis. Drug discovery can also involve screening small molecules for their ability to modulate a biological pathway in cells or organisms, without regard for any particular protein target. This process is likely to benefit in the future from an evolving forward analysis of synthetic pathways, used in diversity-oriented synthesis, that leads to structurally complex and diverse small molecules. One goal of diversity-oriented syntheses is to synthesize efficiently a collection of small molecules capable of perturbing any disease-related biological pathway, leading eventually to the identification of therapeutic protein targets capable of being modulated by small molecules. Several synthetic planning principles for diversity-oriented synthesis and their role in the drug discovery process are presented in this review.

2,229 citations


Journal ArticleDOI
11 Aug 2000-Science
TL;DR: It is established that the ribosome is a ribozyme and the catalytic properties of its all-RNA active site are addressed and the mechanism of peptide bond synthesis appears to resemble the reverse of the acylation step in serine proteases.
Abstract: Using the atomic structures of the large ribosomal subunit from Haloarcula marismortui and its complexes with two substrate analogs, we establish that the ribosome is a ribozyme and address the catalytic properties of its all-RNA active site. Both substrate analogs are contacted exclusively by conserved ribosomal RNA (rRNA) residues from domain V of 23S rRNA; there are no protein side-chain atoms closer than about 18 angstroms to the peptide bond being synthesized. The mechanism of peptide bond synthesis appears to resemble the reverse of the acylation step in serine proteases, with the base of A2486 (A2451 in Escherichia coli) playing the same general base role as histidine-57 in chymotrypsin. The unusual pK(a) (where K(a) is the acid dissociation constant) required for A2486 to perform this function may derive in part from its hydrogen bonding to G2482 (G2447 in E. coli), which also interacts with a buried phosphate that could stabilize unusual tautomers of these two bases. The polypeptide exit tunnel is largely formed by RNA but has significant contributions from proteins L4, L22, and L39e, and its exit is encircled by proteins L19, L22, L23, L24, L29, and L31e.

2,187 citations


Journal ArticleDOI
TL;DR: The mechanisms that specify the identity of neural cells have been examined in many regions of the nervous system and reveal a high degree of conservation in the specification of cell fate by key signalling molecules.
Abstract: Neural circuits are assembled with remarkable precision during embryonic development, and the selectivity inherent in their formation helps to define the behavioural repertoire of the mature organism. In the vertebrate central nervous system, this developmental program begins with the differentiation of distinct classes of neurons from progenitor cells located at defined positions within the neural tube. The mechanisms that specify the identity of neural cells have been examined in many regions of the nervous system and reveal a high degree of conservation in the specification of cell fate by key signalling molecules.

2,060 citations


Journal ArticleDOI
18 Aug 2000-Science
TL;DR: It is demonstrated that tumor and normal endothelium are distinct at the molecular level, a finding that may have significant implications for the development of anti-angiogenic therapies.
Abstract: To gain a molecular understanding of tumor angiogenesis, we compared gene expression patterns of endothelial cells derived from blood vessels of normal and malignant colorectal tissues. Of over 170 transcripts predominantly expressed in the endothelium, 79 were differentially expressed, including 46 that were specifically elevated in tumor-associated endothelium. Several of these genes encode extracellular matrix proteins, but most are of unknown function. Most of these tumor endothelial markers were expressed in a wide range of tumor types, as well as in normal vessels associated with wound healing and corpus luteum formation. These studies demonstrate that tumor and normal endothelium are distinct at the molecular level, a finding that may have significant implications for the development of anti-angiogenic therapies.

1,912 citations


Journal ArticleDOI
25 Feb 2000-Science
TL;DR: Both intrinsic and extrinsic signals regulate stem cell fate and some of these signals have now been identified and can be exploited in the application of stem cells to tissue replacement therapy.
Abstract: Stem cells are currently in the news for two reasons: the successful cultivation of human embryonic stem cell lines and reports that adult stem cells can differentiate into developmentally unrelated cell types, such as nerve cells into blood cells Both intrinsic and extrinsic signals regulate stem cell fate and some of these signals have now been identified Certain aspects of the stem cell microenvironment, or niche, are conserved between tissues, and this can be exploited in the application of stem cells to tissue replacement therapy

Journal ArticleDOI
15 Sep 2000-Science
TL;DR: The results suggest that compounds that exploit the distinctive inactivation mechanisms of individual protein kinases can achieve both high affinity and high specificity.
Abstract: The inadvertent activation of the Abelson tyrosine kinase (Abl) causes chronic myelogenous leukemia (CML). A small-molecule inhibitor of Abl (STI-571) is effective in the treatment of CML. We report the crystal structure of the catalytic domain of Abl, complexed to a variant of STI-571. Critical to the binding of STI-571 is the adoption by the kinase of an inactive conformation, in which a centrally located "activation loop" is not phosphorylated. The conformation of this loop is distinct from that in active protein kinases, as well as in the inactive form of the closely related Src kinases. These results suggest that compounds that exploit the distinctive inactivation mechanisms of individual protein kinases can achieve both high affinity and high specificity.

Journal ArticleDOI
TL;DR: A novel LXR target is described, the sterol regulatory element-binding protein-1c gene (SREBP-1C), which encodes a membrane-bound transcription factor of the basic helix-loop-helix-leucine zipper family and reveals a unique regulatory interplay between cholesterol and fatty acid metabolism.
Abstract: The liver X receptors (LXRs) are members of the nuclear hormone receptor superfamily that are bound and activated by oxysterols. These receptors serve as sterol sensors to regulate the transcription of gene products that control intracellular cholesterol homeostasis through catabolism and transport. In this report, we describe a novel LXR target, the sterol regulatory element-binding protein-1c gene (SREBP-1c), which encodes a membrane-bound transcription factor of the basic helix-loop-helix-leucine zipper family. SREBP-1c expression was markedly increased in mouse tissues in an LXR-dependent manner by dietary cholesterol and synthetic agonists for both LXR and its heterodimer partner, the retinoid X receptor (RXR). Expression of the related gene products, SREBP-1a and SREBP-2, were not increased. Analysis of the mouse SREBP-1c gene promoter revealed an RXR/LXR DNA-binding site that is essential for this regulation. The transcriptional increase in SREBP-1c mRNA by RXR/LXR was accompanied by a similar increase in the level of the nuclear, active form of the SREBP-1c protein and an increase in fatty acid synthesis. Because this active form of SREBP-1c controls the transcription of genes involved in fatty acid biosynthesis, our results reveal a unique regulatory interplay between cholesterol and fatty acid metabolism.

Journal ArticleDOI
24 Mar 2000-Science
TL;DR: The fly has orthologs to 177 of the 289 human disease genes examined and provides the foundation for rapid analysis of some of the basic processes involved in human disease.
Abstract: A comparative analysis of the genomes of Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae-and the proteins they are predicted to encode-was undertaken in the context of cellular, developmental, and evolutionary processes. The nonredundant protein sets of flies and worms are similar in size and are only twice that of yeast, but different gene families are expanded in each genome, and the multidomain proteins and signaling pathways of the fly and worm are far more complex than those of yeast. The fly has orthologs to 177 of the 289 human disease genes examined and provides the foundation for rapid analysis of some of the basic processes involved in human disease.

Journal ArticleDOI
17 Feb 2000-Nature
TL;DR: The gene responsible for the hypochromic anaemia of the zebrafish mutant weissherbst is identified and Ferroportin1 function may be perturbed in mammalian disorders of iron deficiency or overload.
Abstract: Defects in iron absorption and utilization lead to iron deficiency and overload disorders. Adult mammals absorb iron through the duodenum, whereas embryos obtain iron through placental transport. Iron uptake from the intestinal lumen through the apical surface of polarized duodenal enterocytes is mediated by the divalent metal transporter, DMT1 (refs 1,2,3). A second transporter has been postulated to export iron across the basolateral surface to the circulation. Here we have used positional cloning to identify the gene responsible for the hypochromic anaemia of the zebrafish mutant weissherbst. The gene, ferroportin1, encodes a multiple-transmembrane domain protein, expressed in the yolk sac, that is a candidate for the elusive iron exporter. Zebrafish ferroportin1 is required for the transport of iron from maternally derived yolk stores to the circulation and functions as an iron exporter when expressed in Xenopus oocytes. Human Ferroportin1 is found at the basal surface of placental syncytiotrophoblasts, suggesting that it also transports iron from mother to embryo. Mammalian Ferroportin1 is expressed at the basolateral surface of duodenal enterocytes and could export cellular iron into the circulation. We propose that Ferroportin1 function may be perturbed in mammalian disorders of iron deficiency or overload.

Journal ArticleDOI
TL;DR: It is shown that pVHL, through its β-domain, binds directly to hypoxia-inducible factor (HIF), thereby targeting HIF for ubiquitination in an α-domain-dependent manner, the first function to be ascribed to the pV HL β- domain.
Abstract: von Hippel-Lindau (VHL) disease is a hereditary cancer syndrome that is characterized by the development of multiple vascular tumors and is caused by inactivation of the von Hippel-Lindau protein (pVHL). Here we show that pVHL, through its beta-domain, binds directly to hypoxia-inducible factor (HIF), thereby targeting HIF for ubiquitination in an alpha-domain-dependent manner. This is the first function to be ascribed to the pVHL beta-domain. Furthermore, we provide the first direct evidence that pVHL has a function analogous to that of an F-box protein, namely, to recruit substrates to a ubiquitination machine. These results strengthen the link between overaccumulation of HIF and development of VHL disease.

Journal ArticleDOI
25 May 2000-Nature
TL;DR: It is shown that CTCF, a zinc finger protein implicated in vertebrate boundary function, binds to several sites in the unmethylated imprinted-control region that are essential for enhancer blocking, the first example, to the authors' knowledge, of a regulated chromatin boundary in vertebrates.
Abstract: The Insulin-like growth factor 2 (Igf2) and H19 genes are imprinted, resulting in silencing of the maternal and paternal alleles, respectively This event is dependent upon an imprinted-control region two kilobases upstream of H19 (refs 1, 2) On the paternal chromosome this element is methylated and required for the silencing of H19 (refs 2-4) On the maternal chromosome the region is unmethylated and required for silencing of the Igf2 gene 90 kilobases upstream We have proposed that the unmethylated imprinted-control region acts as a chromatin boundary that blocks the interaction of Igf2 with enhancers that lie 3' of H19 (refs 5, 6) This enhancer-blocking activity would then be lost when the region was methylated, thereby allowing expression of Igf2 paternally Here we show, using transgenic mice and tissue culture, that the unmethylated imprinted-control regions from mouse and human H19 exhibit enhancer-blocking activity Furthermore, we show that CTCF, a zinc finger protein implicated in vertebrate boundary function, binds to several sites in the unmethylated imprinted-control region that are essential for enhancer blocking Consistent with our model, CTCF binding is abolished by DNA methylation This is the first example, to our knowledge, of a regulated chromatin boundary in vertebrates

Journal ArticleDOI
12 Oct 2000-Nature
TL;DR: The hypothesis that P. aeruginosa might exist as biofilms—structured communities of bacteria encased in a self-produced polymeric matrix—in the cystic fibrosis lung is supported by microscopy of cystic Fibrosis sputum, which shows that the bacterium are in biofilm-like structures.
Abstract: The bacterium Pseudomonas aeruginosa permanently colonizes cystic fibrosis lungs despite aggressive antibiotic treatment. This suggests that P. aeruginosa might exist as biofilms--structured communities of bacteria encased in a self-produced polymeric matrix--in the cystic fibrosis lung. Consistent with this hypothesis, microscopy of cystic fibrosis sputum shows that P. aeruginosa are in biofilm-like structures. P. aeruginosa uses extracellular quorum-sensing signals (extracellular chemical signals that cue cell-density-dependent gene expression) to coordinate biofilm formation. Here we found that cystic fibrosis sputum produces the two principal P. aeruginosa quorum-sensing signals; however, the relative abundance of these signals was opposite to that of the standard P. aeruginosa strain PAO1 in laboratory broth culture. When P. aeruginosa sputum isolates were grown in broth, some showed quorum-sensing signal ratios like those of the laboratory strain. When we grew these isolates and PAO1 in a laboratory biofilm model, the signal ratios were like those in cystic fibrosis sputum. Our data support the hypothesis that P. aeruginosa are in a biofilm in cystic fibrosis sputum. Moreover, quorum-sensing signal profiling of specific P. aeruginosa strains may serve as a biomarker in screens to identify agents that interfere with biofilm development.

Journal ArticleDOI
03 Aug 2000-Nature
TL;DR: An in vivo selection scheme is used to select highly metastatic melanoma cells to identify families of genes involved in a process, not just single genes, and can indicate which molecular and cellular events might be important in complex biological processes such as metastasis.
Abstract: The most damaging change during cancer progression is the switch from a locally growing tumour to a metastatic killer. This switch is believed to involve numerous alterations that allow tumour cells to complete the complex series of events needed for metastasis. Relatively few genes have been implicated in these events. Here we use an in vivo selection scheme to select highly metastatic melanoma cells. By analysing these cells on DNA arrays, we define a pattern of gene expression that correlates with progression to a metastatic phenotype. In particular, we show enhanced expression of several genes involved in extracellular matrix assembly and of a second set of genes that regulate, either directly or indirectly, the actin-based cytoskeleton. One of these, the small GTPase RhoC, enhances metastasis when overexpressed, whereas a dominant-negative Rho inhibits metastasis. Analysis of the phenotype of cells expressing dominant-negative Rho or RhoC indicates that RhoC is important in tumour cell invasion. The genomic approach allows us to identify families of genes involved in a process, not just single genes, and can indicate which molecular and cellular events might be important in complex biological processes such as metastasis.

Journal ArticleDOI
TL;DR: The positional cloning of a gene located in the NIDDM1 region that shows association with type 2 diabetes in Mexican Americans and a Northern European population from the Botnia region of Finland is described, suggesting a novel pathway that may contribute to the development of type 1 diabetes.
Abstract: Type 2 or non-insulin-dependent diabetes mellitus (NIDDM) is the most common form of diabetes worldwide, affecting approximately 4% of the world's adult population. It is multifactorial in origin with both genetic and environmental factors contributing to its development. A genome-wide screen for type 2 diabetes genes carried out in Mexican Americans localized a susceptibility gene, designated NIDDM1, to chromosome 2. Here we describe the positional cloning of a gene located in the NIDDM1 region that shows association with type 2 diabetes in Mexican Americans and a Northern European population from the Botnia region of Finland. This putative diabetes-susceptibility gene encodes a ubiquitously expressed member of the calpain-like cysteine protease family, calpain-10 (CAPN10). This finding suggests a novel pathway that may contribute to the development of type 2 diabetes.

Journal ArticleDOI
22 Dec 2000-Cell
TL;DR: Analysis of Period gene expression in the suprachiasmatic nucleus (SCN) indicates that these behavioral phenotypes arise from loss of circadian function at the molecular level, and provides genetic evidence that MOP3 is the bona fide heterodimeric partner of mCLOCK.


Journal ArticleDOI
07 Apr 2000-Science
TL;DR: The microtubule-based kinesin motors and actin-based myosin motors generate motions associated with intracellular trafficking, cell division, and muscle contraction using a common core structure and convert energy from adenosine triphosphate into protein motion using a similar conformational change strategy.
Abstract: The microtubule-based kinesin motors and actin-based myosin motors generate motions associated with intracellular trafficking, cell division, and muscle contraction. Early studies suggested that these molecular motors work by very different mechanisms. Recently, however, it has become clear that kinesin and myosin share a common core structure and convert energy from adenosine triphosphate into protein motion using a similar conformational change strategy. Many different types of mechanical amplifiers have evolved that operate in conjunction with the conserved core. This modular design has given rise to a remarkable diversity of kinesin and myosin motors whose motile properties are optimized for performing distinct biological functions.

Journal ArticleDOI
TL;DR: Results suggest that phosphorylation of serine 307 might mediate, at least partially, the inhibitory effect of proinflammatory cytokines like TNFα on IRS-1 function.

Journal ArticleDOI
28 Sep 2000-Nature
TL;DR: It is shown that the ER isoform, ERα, binds in a ligand-dependent manner to the p85α regulatory subunit of phosphatidylinositol-3-OH kinase (PI(3)K).
Abstract: Oestrogen produces diverse biological effects through binding to the oestrogen receptor (ER). The ER is a steroid hormone nuclear receptor, which, when bound to oestrogen, modulates the transcriptional activity of target genes. Controversy exists, however, concerning whether ER has a role outside the nucleus, particularly in mediating the cardiovascular protective effects of oestrogen. Here we show that the ER isoform, ER alpha, binds in a ligand-dependent manner to the p85alpha regulatory subunit of phosphatidylinositol-3-OH kinase (PI(3)K). Stimulation with oestrogen increases ER alpha-associated PI(3)K activity, leading to the activation of protein kinase B/Akt and endothelial nitric oxide synthase (eNOS). Recruitment and activation of PI(3)K by ligand-bound ER alpha are independent of gene transcription, do not involve phosphotyrosine adapter molecules or src-homology domains of p85alpha, and extend to other steroid hormone receptors. Mice treated with oestrogen show increased eNOS activity and decreased vascular leukocyte accumulation after ischaemia and reperfusion injury. This vascular protective effect of oestrogen was abolished in the presence of PI(3)K or eNOS inhibitors. Our findings define a physiologically important non-nuclear oestrogen-signalling pathway involving the direct interaction of ER alpha with PI(3)K.

Journal ArticleDOI
10 Mar 2000-Science
TL;DR: Chk2 directly phosphorylated p53 on serine 20, which is known to interfere with Mdm2 binding, and provides a mechanism for increased stability of p53 by prevention of ubiquitination in response to DNA damage.
Abstract: Chk2 is a protein kinase that is activated in response to DNA damage and may regulate cell cycle arrest. We generated Chk2-deficient mouse cells by gene targeting. Chk2-/- embryonic stem cells failed to maintain gamma-irradiation-induced arrest in the G2 phase of the cell cycle. Chk2-/- thymocytes were resistant to DNA damage-induced apoptosis. Chk2-/- cells were defective for p53 stabilization and for induction of p53-dependent transcripts such as p21 in response to gamma irradiation. Reintroduction of the Chk2 gene restored p53-dependent transcription in response to gamma irradiation. Chk2 directly phosphorylated p53 on serine 20, which is known to interfere with Mdm2 binding. This provides a mechanism for increased stability of p53 by prevention of ubiquitination in response to DNA damage.

Journal ArticleDOI
27 Oct 2000-Cell
TL;DR: This work cloned cDNAs encoding the vanilloid receptor-related osmotically activated channel (VR-OAC) from the rat, mouse, human, and chicken, a novel cation-selective channel that is gated by exposure to hypotonicity within the physiological range.

Journal ArticleDOI
TL;DR: It is demonstrated that tBID functions as a membrane-targeted death ligand in which an intact BH3 domain is required for cytochrome c release, but not for targeting.
Abstract: TNFR1/Fas engagement results in the cleavage of cytosolic BID to truncated tBID, which translocates to mitochondria. Immunodepletion and gene disruption indicate BID is required for cytochrome c release. Surprisingly, the three-dimensional structure of this BH3 domain-only molecule revealed two hydrophobic alpha-helices suggesting tBID itself might be a pore-forming protein. Instead, we demonstrate that tBID functions as a membrane-targeted death ligand in which an intact BH3 domain is required for cytochrome c release, but not for targeting. Bak-deficient mitochondria and blocking antibodies reveal tBID binds to its mitochondrial partner BAK to release cytochrome c, a process independent of permeability transition. Activated tBID results in an allosteric activation of BAK, inducing its intramembranous oligomerization into a proposed pore for cytochrome c efflux, integrating the pathway from death receptors to cell demise.

Journal ArticleDOI
01 Sep 2000-Science
TL;DR: Several nuclear hormone receptors involved in lipid metabolism form obligate heterodimers with retinoid X receptors (RXRs) and are activated by RXR agonists such as rexinoids and serve as key regulators of cholesterol homeostasis by governing reverse cholesterol transport from peripheral tissues, bile acid synthesis in liver, and cholesterol absorption in intestine.
Abstract: Several nuclear hormone receptors involved in lipid metabolism form obligate heterodimers with retinoid X receptors (RXRs) and are activated by RXR agonists such as rexinoids. Animals treated with rexinoids exhibited marked changes in cholesterol balance, including inhibition of cholesterol absorption and repressed bile acid synthesis. Studies with receptor-selective agonists revealed that oxysterol receptors (LXRs) and the bile acid receptor (FXR) are the RXR heterodimeric partners that mediate these effects by regulating expression of the reverse cholesterol transporter, ABC1, and the rate-limiting enzyme of bile acid synthesis, CYP7A1, respectively. Thus, these RXR heterodimers serve as key regulators of cholesterol homeostasis by governing reverse cholesterol transport from peripheral tissues, bile acid synthesis in liver, and cholesterol absorption in intestine.

Journal ArticleDOI
TL;DR: It is shown that overcomplete bases can yield a better approximation of the underlying statistical distribution of the data and can thus lead to greater coding efficiency and provide a method for Bayesian reconstruction of signals in the presence of noise and for blind source separation when there are more sources than mixtures.
Abstract: In an overcomplete basis, the number of basis vectors is greater than the dimensionality of the input, and the representation of an input is not a unique combination of basis vectors. Overcomplete representations have been advocated because they have greater robustness in the presence of noise, can be sparser, and can have greater flexibility in matching structure in the data. Overcomplete codes have also been proposed as a model of some of the response properties of neurons in primary visual cortex. Previous work has focused on finding the best representation of a signal using a fixed overcomplete basis (or dictionary). We present an algorithm for learning an overcomplete basis by viewing it as probabilistic model of the observed data. We show that overcomplete bases can yield a better approximation of the underlying statistical distribution of the data and can thus lead to greater coding efficiency. This can be viewed as a generalization of the technique of independent component analysis and provides a method for Bayesian reconstruction of signals in the presence of noise and for blind source separation when there are more sources than mixtures.