scispace - formally typeset
Search or ask a question
Institution

Howard Hughes Medical Institute

NonprofitChevy Chase, Maryland, United States
About: Howard Hughes Medical Institute is a nonprofit organization based out in Chevy Chase, Maryland, United States. It is known for research contribution in the topics: Gene & RNA. The organization has 20371 authors who have published 34677 publications receiving 5247143 citations. The organization is also known as: HHMI & hhmi.org.


Papers
More filters
Journal ArticleDOI
10 Apr 1997-Nature
TL;DR: It is shown that colorectal tumours without microsatellite instability exhibit a striking defect in chromosome segregation, resulting in gains or losses in excess of 10 –2 per chromosome per generation, and that such instability can arise through two distinct pathways.
Abstract: It has long been considered that genetic instability is an integral component of human neoplasia1–3. In a small fraction of tumours, mismatch repair deficiency leads to a microsatellite instability at the nucleotide sequence level4,5. In other tumours, an abnormal chromosome number (aneuploidy) has suggested an instability, but the nature and magnitude of the postulated instability is a matter of conjecture. We show here that colorectal tumours without microsatellite instability exhibit a striking defect in chromosome segregation, resulting in gains or losses in excess of 10 –2 per chromosome per generation. This form of chromosomal instability reflected a continuing cellular defect that persisted throughout the lifetime of the tumour cell and was not simply related to chromosome number. While microsatellite instability is a recessive trait6,7, chromosomal instability appeared to be dominant. These data indicate that persistent genetic instability may be critical for the development of all colorectal cancers, and that such instability can arise through two distinct pathways.

1,960 citations

Journal ArticleDOI
16 Jan 2004-Science
TL;DR: It is found that these cells rarely divide within their niche but change properties abruptly when stimulated to exit, and their transcriptional profile is determined, which, when compared to progeny and other SCs, defines the niche.
Abstract: Many adult regenerative cells divide infrequently but have high proliferative capacity. We developed a strategy to fluorescently label slow-cycling cells in a cell type-specific fashion. We used this method to purify the label-retaining cells (LRCs) that mark the skin stem cell (SC) niche. We found that these cells rarely divide within their niche but change properties abruptly when stimulated to exit. We determined their transcriptional profile, which, when compared to progeny and other SCs, defines the niche. Many of the >100 messenger RNAs preferentially expressed in the niche encode surface receptors and secreted proteins, enabling LRCs to signal and respond to their environment.

1,956 citations

Journal ArticleDOI
30 Nov 2017-Cell
TL;DR: The expanded CMap is reported, made possible by a new, low-cost, high-throughput reduced representation expression profiling method that is shown to be highly reproducible, comparable to RNA sequencing, and suitable for computational inference of the expression levels of 81% of non-measured transcripts.

1,943 citations

Journal ArticleDOI
11 May 1990-Science
TL;DR: Staphylococcal enterotoxins and a group of related proteins made by Streptococci cause food poisoning and shock in man and animals and it is likely that some or all of the pathological effects of these toxins are caused by their ability to activate quickly so many T cells.
Abstract: Staphylococcal enterotoxins and a group of related proteins made by Streptococci cause food poisoning and shock in man and animals. These proteins share an ability to bind to human and mouse major histocompatibility complex proteins. The complex ligand so formed has specificity for a particular part of T cell receptors, V beta, and by engaging V beta can stimulate many T cells. It is likely that some or all of the pathological effects of these toxins are caused by their ability to activate quickly so many T cells. It is also possible that encounters with such toxins have caused mice, at least, to evolve mechanisms for varying their T cell V beta repertoires, such that they are less susceptible to attack by the toxins.

1,941 citations

Journal ArticleDOI
23 Sep 1999-Nature
TL;DR: Results suggest that the transplantation of different stem cell populations, using the procedures of bone marrow transplantation, might provide an unanticipated avenue for treating muscular dystrophy as well as other diseases where the systemic delivery of therapeutic cells to sites throughout the body is critical.
Abstract: The development of cell or gene therapies for diseases involving cells that are widely distributed throughout the body has been severely hampered by the inability to achieve the disseminated delivery of cells or genes to the affected tissues or organ. Here we report the results of bone marrow transplantation studies in the mdx mouse, an animal model of Duchenne's muscular dystrophy, which indicate that the intravenous injection of either normal haematopoietic stem cells or a novel population of muscle-derived stem cells into irradiated animals results in the reconstitution of the haematopoietic compartment of the transplanted recipients, the incorporation of donor-derived nuclei into muscle, and the partial restoration of dystrophin expression in the affected muscle. These results suggest that the transplantation of different stem cell populations, using the procedures of bone marrow transplantation, might provide an unanticipated avenue for treating muscular dystrophy as well as other diseases where the systemic delivery of therapeutic cells to sites throughout the body is critical. Our studies also suggest that the inherent developmental potential of stem cells isolated from diverse tissues or organs may be more similar than previously anticipated.

1,937 citations


Authors

Showing all 20486 results

NameH-indexPapersCitations
Bert Vogelstein247757332094
Richard A. Flavell2311328205119
Steven A. Rosenberg2181204199262
Kenneth W. Kinzler215640243944
Robert J. Lefkowitz214860147995
Rob Knight2011061253207
Irving L. Weissman2011141172504
Ronald M. Evans199708166722
Francis S. Collins196743250787
Craig B. Thompson195557173172
Thomas C. Südhof191653118007
Joan Massagué189408149951
Stuart H. Orkin186715112182
John P. A. Ioannidis1851311193612
Eric R. Kandel184603113560
Network Information
Related Institutions (5)
Salk Institute for Biological Studies
13.1K papers, 1.6M citations

98% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

96% related

Broad Institute
11.6K papers, 1.5M citations

96% related

Scripps Research Institute
32.8K papers, 2.9M citations

95% related

Rockefeller University
32.9K papers, 2.9M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202330
2022228
20211,583
20201,587
20191,591
20181,394