scispace - formally typeset
Search or ask a question
Institution

Istituto Italiano di Tecnologia

FacilityGenoa, Italy
About: Istituto Italiano di Tecnologia is a facility organization based out in Genoa, Italy. It is known for research contribution in the topics: Robot & Humanoid robot. The organization has 4561 authors who have published 14595 publications receiving 437558 citations. The organization is also known as: Italian Institute of Technology & IIT.
Topics: Robot, Humanoid robot, Graphene, iCub, Nanoparticle


Papers
More filters
Journal ArticleDOI
TL;DR: The overall approach proposed in the present work is able to provide the proper accuracy to support experimental investigations even for large molecular systems of biotechnological interest in a fully automated manner, without any ad hoc scaling procedure.
Abstract: A general second-order perturbative approach based on resonance- and threshold-free computations of vibrational properties is introduced and validated. It starts from the evaluation of accurate anharmonic zero-point vibrational energies for semirigid molecular systems, in a way that avoids any singularity. Next, the degeneracy corrected second-order perturbation theory (DCPT2) is extended to a hybrid version (HDCPT2), allowing for reliable computations even in cases where the original formulation faces against severe problems, including also an automatic treatment of internal rotations through the hindered-rotor model. These approaches, in conjunction with the so-called simple perturbation theory (SPT) reformulated to treat consistently both energy minima and transition states, allow one to evaluate degeneracy-corrected partition functions further used to obtain vibrational contributions to properties like enthalpy, entropy, or specific heat. The spectroscopic accuracy of the HDCPT2 model has been also va...

238 citations

Journal ArticleDOI
TL;DR: A precise microscopic definition of the recently observed inverse Edelstein effect in which a nonequilibrium spin accumulation in the plane of a two-dimensional (interfacial) electron gas drives an electric current perpendicular to its own direction is provided.
Abstract: We provide a precise microscopic definition of the recently observed inverse Edelstein effect in which a nonequilibrium spin accumulation in the plane of a two-dimensional (interfacial) electron gas drives an electric current perpendicular to its own direction. The drift-diffusion equations that govern the effect are presented and applied to the interpretation of the experiments.

238 citations

Journal ArticleDOI
TL;DR: The method allows a robotic manipulator to learn to perform tasks that require exerting forces on external objects by interacting with a human operator in an unstructured environment by learning two aspects of a task: positional and force profiles.
Abstract: A method to learn and reproduce robot force interactions in a human–robot interaction setting is proposed. The method allows a robotic manipulator to learn to perform tasks that require exerting forces on external objects by interacting with a human operator in an unstructured environment. This is achieved by learning two aspects of a task: positional and force profiles. The positional profile is obtained from task demonstrations via kinesthetic teaching. The force profile is obtained from additional demonstrations via a haptic device. A human teacher uses the haptic device to input the desired forces that the robot should exert on external objects during the task execution. The two profiles are encoded as a mixture of dynamical systems, which is used to reproduce the task satisfying both the positional and force profiles. An active control strategy based on task-space control with variable stiffness is then proposed to reproduce the skill. The method is demonstrated with two experiments in which the robo...

237 citations

Journal ArticleDOI
TL;DR: Findings demonstrated the importance of nanogeometry in cell stable adhesion and growth, suggesting that moderately rough substrates with large fractal dimension could selectively boost cell proliferation.

236 citations

Journal ArticleDOI
29 Jan 2010-Science
TL;DR: It is found that localized cAMP and cGMP activities in undifferentiated neurites of cultured hippocampal neurons promote and suppress axon formation, respectively, and exert opposite effects on dendrite formation.
Abstract: Cytosolic cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) often mediate antagonistic cellular actions of extracellular factors, from the regulation of ion channels to cell volume control and axon guidance. We found that localized cAMP and cGMP activities in undifferentiated neurites of cultured hippocampal neurons promote and suppress axon formation, respectively, and exert opposite effects on dendrite formation. Fluorescence resonance energy transfer imaging showed that alterations of the amount of cAMP resulted in opposite changes in the amount of cGMP, and vice versa, through the activation of specific phosphodiesterases and protein kinases. Local elevation of cAMP in one neurite resulted in cAMP reduction in all other neurites of the same neuron. Thus, local and long-range reciprocal regulation of cAMP and cGMP together ensures coordinated development of one axon and multiple dendrites.

236 citations


Authors

Showing all 4601 results

NameH-indexPapersCitations
Marc G. Caron17367499802
Paolo Vineis134108886608
Michele Parrinello13363794674
Alex J. Barker132127384746
Tomaso Poggio13260888676
Shuai Liu129109580823
Giacomo Rizzolatti11729897242
Yehezkel Ben-Ari11045944293
Daniele Piomelli10450549009
Bruno Scrosati10358066572
Wolfgang J. Parak10246943307
Liberato Manna9849444780
Muhammad Imran94305351728
Ole Isacson9334530460
Luigi Ambrosio9376139688
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

92% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202313
2022109
20211,576
20201,618
20191,439
20181,381