scispace - formally typeset
Search or ask a question
Institution

Istituto Italiano di Tecnologia

FacilityGenoa, Italy
About: Istituto Italiano di Tecnologia is a facility organization based out in Genoa, Italy. It is known for research contribution in the topics: Robot & Humanoid robot. The organization has 4561 authors who have published 14595 publications receiving 437558 citations. The organization is also known as: Italian Institute of Technology & IIT.
Topics: Robot, Humanoid robot, Graphene, iCub, Nanoparticle


Papers
More filters
Journal ArticleDOI
02 Aug 2011-ACS Nano
TL;DR: The Cu(2-x)Se(core)/Cu(2)S(pods) octapod represents another example of a nanostructure in which branching is achieved by proper organization of cubic and hexagonal domains in a single nanocrystal.
Abstract: Octapod-shaped colloidal nanocrystals composed of a central “core” region of cubic sphalerite CdSe and pods of hexagonal wurtzite CdS are subject to a cation exchange reaction in which Cd2+ ions are progressively exchanged by Cu+ ions. The reaction starts from the tip regions of the CdS pods and proceeds toward the center of the nanocrystals. It preserves both the shape and the anionic lattices of the heterostructures. During the exchange, the hexagonal wurtzite CdS pods are converted gradually into pods of hexagonal Cu2S chalcocite. Therefore, the partial cation exchange reactions lead to the formation of a ternary nanostructure, consisting of an octapod in which the central core is still CdSe, while the pods have a segmented CdS/Cu2S composition. When the cation exchange reaches the core, the cubic sphalerite CdSe core is converted into a core of cubic Cu2–xSe berzelianite phase. Therefore fully exchanged octapods are composed of a core of Cu2–xSe and eight pods of Cu2S. All these structures are stable,...

106 citations

Book ChapterDOI
01 Jan 2014
TL;DR: This chapter presents an overview of recent progress and the state-of-the-art approaches to solving some of the fundamental challenges in person re-identification, benefiting from research in computer vision, pattern recognition and machine learning, and drawing insights from video analytics system design considerations for engineering practical solutions.
Abstract: For making sense of the vast quantity of visual data generated by the rapid expansion of large-scale distributed multi-camera systems, automated person re-identification is essential However, it poses a significant challenge to computer vision systems Fundamentally, person re-identification requires to solve two difficult problems of ‘finding needles in haystacks’ and ‘connecting the dots’ by identifying instances and associating the whereabouts of targeted people travelling across large distributed space–time locations in often crowded environments This capability would enable the discovery of, and reasoning about, individual-specific long-term structured activities and behaviours Whilst solving the person re-identification problem is inherently challenging, it also promises enormous potential for a wide range of practical applications, ranging from security and surveillance to retail and health care As a result, the field has drawn growing and wide interest from academic researchers and industrial developers This chapter introduces the re-identification problem, highlights the difficulties in building person re-identification systems, and presents an overview of recent progress and the state-of-the-art approaches to solving some of the fundamental challenges in person re-identification, benefiting from research in computer vision, pattern recognition and machine learning, and drawing insights from video analytics system design considerations for engineering practical solutions It also provides an introduction of the contributing chapters of this book The chapter ends by posing some open questions for the re-identification challenge arising from emerging and future applications

106 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes the cutting edge advances in the field of textile-based energy storage devices with particular emphasis on the nature and preparation of electrode materials for both supercapacitors and lithium ion batteries.
Abstract: This review summarizes the cutting edge advances in the field of textile-based energy storage devices with particular emphasis on the nature and preparation of electrode materials for both supercapacitors and lithium ion batteries. Indeed, due to the overwhelming increase of the worldwide demand for high-tech products, energy storage has become one of the most up-to-date debating topics. In this regard, and considering also the well-known environmental issues often related to the fabrication of new energy products, it is important for the scientific community to develop new electrochemical energy storage systems based on eco-efficient synthetic processes and capable of serving the needs of the next generation of electronics. To this end, textile-based energy storage devices are emerging as a viable alternative to their conventional rigid counterparts. These devices have to be flexible, lightweight and should be compatible with futuristic miniaturized electronic gadgets. We have discussed how supercapacitors and Li-ion batteries are combined with textiles to realize flexible and wearable storage devices. The most important parameters, both from the electrochemical and textile points of view, have been taken into account in order to provide, as much as possible, a standard reference for comparing different kinds of textile-based energy storage devices. These parameters include electrode fibers configuration, fiber diameter, tensile strength, capacitance, charge/discharge capacity, Coulombic efficiency and capacity retention. Furthermore, in this review textile electrodes have been classified into two categories, according to the fabrication strategies: bottom-up and top-down fabrication processes. To conclude, the main aim of this review is to provide an organic outline of the recent research progress and perspectives on textile-based energy storage devices.

106 citations

Journal ArticleDOI
TL;DR: In this paper, a colloidal approach for the synthesis of CsPbBr3 nanocrystals (NCs) was devised, in which the only ligands employed are alkyl phosphonic acids.
Abstract: We devised a colloidal approach for the synthesis of CsPbBr3 nanocrystals (NCs) in which the only ligands employed are alkyl phosphonic acids. Compared to more traditional syntheses of CsPbBr3 NCs, the present scheme delivers NCs with the following distinctive features: (i) The NCs do not have cubic but truncated octahedron shape enclosed by Pb-terminated facets. This is a consequence of the strong binding affinity of the phosphonate groups toward Pb2+ ions. (II) The NCs have near unity photoluminescence quantum yields (PLQYs), with no need of postsynthesis treatments, indicating that alkyl phosphonic acids are effectively preventing the formation of surface traps. (III) Unlike NCs coated with alkylammonium or carboxylate ligands, the PLQY of phosphonate coated NCs remains constant upon dilution, suggesting that the ligands are tightly bound to the surface.

106 citations

Journal ArticleDOI
TL;DR: This Account has framed state of the art magnetic stimuli-responsive systems, focusing on thermo- and pH-responsive behavior, following an organization based on the response mechanisms of polymers, to impact the cancer field by combining magnetic hyperthermia with stimuli-dependent controlled drug delivery toward multimodal therapies.
Abstract: ConspectusCombining hard matter, like inorganic nanocrystals, and soft materials, like polymers, can generate multipurpose materials with a broader range of applications with respect to the individual building blocks. Given their unique properties at the nanoscale, magnetic nanoparticles (MNPs) have drawn a great deal of interest due to their potential use in the biomedical field, targeting several applications such as heat hubs in magnetic hyperthermia (MHT, a heat-damage based therapy), contrast agents in magnetic resonance imaging (MRI), and nanocarriers for targeted drug delivery. At the same time, polymers, with their versatile macromolecular structure, can serve as flexible platforms with regard to constructing advanced functional materials. Advances in the development of novel polymerization techniques has enabled the preparation of a large portfolio of polymers that have intriguing physicochemical properties; in particular, those polymers that can undergo conformational and structural changes in r...

106 citations


Authors

Showing all 4601 results

NameH-indexPapersCitations
Marc G. Caron17367499802
Paolo Vineis134108886608
Michele Parrinello13363794674
Alex J. Barker132127384746
Tomaso Poggio13260888676
Shuai Liu129109580823
Giacomo Rizzolatti11729897242
Yehezkel Ben-Ari11045944293
Daniele Piomelli10450549009
Bruno Scrosati10358066572
Wolfgang J. Parak10246943307
Liberato Manna9849444780
Muhammad Imran94305351728
Ole Isacson9334530460
Luigi Ambrosio9376139688
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

92% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202313
2022109
20211,576
20201,618
20191,439
20181,381