scispace - formally typeset
Search or ask a question
Institution

Istituto Italiano di Tecnologia

FacilityGenoa, Italy
About: Istituto Italiano di Tecnologia is a facility organization based out in Genoa, Italy. It is known for research contribution in the topics: Robot & Humanoid robot. The organization has 4561 authors who have published 14595 publications receiving 437558 citations. The organization is also known as: Italian Institute of Technology & IIT.
Topics: Robot, Humanoid robot, Graphene, iCub, Nanoparticle


Papers
More filters
Journal ArticleDOI
TL;DR: A pneumatic manipulator inspired by biological continuum structures in some of their key features and functions, such as continuum morphology, intrinsic compliance and stereotyped motions with hyper redundant DOF is presented.
Abstract: Biological tentacles, such as octopus arms, have entirely flexible structures and virtually infinite degrees of freedom (DOF) that allow for elongation, shortening and bending at any point along the arm length. The amazing dexterity of biological tentacles has driven the growing implementation of continuum manipulators in robotic systems. This paper presents a pneumatic manipulator inspired by biological continuum structures in some of their key features and functions, such as continuum morphology, intrinsic compliance and stereotyped motions with hyper redundant DOF. The kinematics and dynamics of the manipulator are formulated and identified, and a hierarchical controller taking inspiration from the structure of an octopus nervous system is used to relate desired stereotyped motions to individual actuator inputs. Simulations and experiments are carried out to validate the model and prototype where good agreement was found between the two.

119 citations

Journal ArticleDOI
TL;DR: Findings about dendritic proliferation and remodeling in different areas of the nervous system and species are compared, and recent evidence for a role in axonal elongation is reviewed.
Abstract: During development, GABAergic neurons mature at early stages, long before excitatory neurons. Conversely, GABA reuptake transporters become operative later than glutamate transporters. GABA is therefore not removed efficiently from the extracellular domain and it can exert significant paracrine effects. Hence, GABA-mediated activity is a prominent source of overall neural activity in developing CNS networks, while neurons extend dendrites and axons, and establish synaptic connections. One of the unique features of GABAergic functional plasticity is that in early development, activation of GABAA receptors results in depolarizing (mainly excitatory) responses and Ca2+ influx. Although there is strong evidence from several areas of the CNS that GABA plays a significant role in neurite growth not only during development but also during adult neurogenesis, surprisingly little effort has been made into putting all these observations into a common framework in an attempt to understand the general rules that regulate these basic and evolutionary well-conserved processes. In this review, we discuss the current knowledge in this important field. In order to decipher common, universal features and highlight differences between systems throughout development, we compare findings about dendritic proliferation and remodeling in different areas of the nervous system and species, and we also review recent evidence for a role in axonal elongation. In addition to early developmental aspects, we also consider the GABAergic role in dendritic growth during adult neurogenesis, extending our discussion to the roles played by GABA during dendritic proliferation in early developing networks versus adult, well established networks.

119 citations

Journal ArticleDOI
TL;DR: A new quantum interferometric scheme based on three-dimensional waveguide devices based on Fock states is proposed and theoretically investigated, expected to open new perspectives to quantum enhanced sensing and metrology performed in integrated photonics.
Abstract: Quantum interferometry uses quantum resources to improve phase estimation with respect to classical methods. Here we propose and theoretically investigate a new quantum interferometric scheme based on three-dimensional waveguide devices. These can be implemented by femtosecond laser waveguide writing, recently adopted for quantum applications. In particular, multiarm interferometers include “tritter” and “quarter” as basic elements, corresponding to the generalization of a beam splitter to a 3- and 4-port splitter, respectively. By injecting Fock states in the input ports of such interferometers, fringe patterns characterized by nonclassical visibilities are expected. This enables outperforming the quantum Fisher information obtained with classical fields in phase estimation. We also discuss the possibility of achieving the simultaneous estimation of more than one optical phase. This approach is expected to open new perspectives to quantum enhanced sensing and metrology performed in integrated photonics.

119 citations

Journal ArticleDOI
TL;DR: Analysis of RNase H and the N-terminal domain of influenza polymerase shows that classical molecular dynamics simulations coupled with enhanced sampling techniques have contributed to describe the modulatory effect of metal ion concentration and metal uptake on the 2M mechanism and efficiency, pointing to the emerging and intriguing role of additional adjacent ions potentially involved in the modulation of phosphoryl transfer reactions and enzymatic turnover in 2M-catalysis.
Abstract: ConspectusTwo-metal-ion-dependent nucleases cleave the phosphodiester bonds of nucleic acids via the two-metal-ion (2M) mechanism. Several high-resolution X-ray structures portraying the two-metal-aided catalytic site, together with mutagenesis and kinetics studies, have demonstrated a functional role of the ions for catalysis in numerous metallonucleases. Overall, the experimental data confirm the general mechanistic hypothesis for 2M-aided phosphoryl transfer originally reported by Steitz and Steitz (Proc. Natl. Acad. Sci. U.S.A. 1993, 90 (14), 6498−6502). This seminal paper proposed that one metal ion favors the formation of the nucleophile, while the nearby second metal ion facilitates leaving group departure during RNA hydrolysis. Both metals were suggested to stabilize the enzymatic transition state. Nevertheless, static X-ray structures alone cannot exhaustively unravel how the two ions execute their functional role along the enzymatic reaction during processing of DNA or RNA strands when moving fr...

119 citations

Journal ArticleDOI
TL;DR: In this Opinion, the lifecycle of magnetic iron oxide nanoparticles is focused on, a versatile and biocompatible class of nanoparticles, which found their way to clinical trials.

119 citations


Authors

Showing all 4601 results

NameH-indexPapersCitations
Marc G. Caron17367499802
Paolo Vineis134108886608
Michele Parrinello13363794674
Alex J. Barker132127384746
Tomaso Poggio13260888676
Shuai Liu129109580823
Giacomo Rizzolatti11729897242
Yehezkel Ben-Ari11045944293
Daniele Piomelli10450549009
Bruno Scrosati10358066572
Wolfgang J. Parak10246943307
Liberato Manna9849444780
Muhammad Imran94305351728
Ole Isacson9334530460
Luigi Ambrosio9376139688
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

92% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202313
2022109
20211,576
20201,618
20191,439
20181,381