scispace - formally typeset
Search or ask a question
Institution

Istituto Italiano di Tecnologia

FacilityGenoa, Italy
About: Istituto Italiano di Tecnologia is a facility organization based out in Genoa, Italy. It is known for research contribution in the topics: Robot & Humanoid robot. The organization has 4561 authors who have published 14595 publications receiving 437558 citations. The organization is also known as: Italian Institute of Technology & IIT.
Topics: Robot, Humanoid robot, Graphene, iCub, Nanoparticle


Papers
More filters
Journal ArticleDOI
TL;DR: This work shows how monodisperse colloidalOctapod-shaped nanocrystals self-assemble, in a suitable solution environment, on two sequential levels, and all the instructions for the hierarchical self-assembly are encoded in the octapod shape.
Abstract: Self-assembly of molecular units into complex and functional superstructures is ubiquitous in biology. The number of superstructures realized by self-assembly of man-made nanoscale units is also growing. However, assemblies of colloidal inorganic nanocrystals 1‐3 are still at an elementary level, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we show how monodisperse colloidal octapod-shaped nanocrystals self-assemble, in a suitable solution environment, on two sequential levels. First, linear chains of interlocked octapods are formed, and subsequently the chains spontaneously self-assemble into threedimensional superstructures. Remarkably, all the instructions for the hierarchical self-assembly are encoded in the octapod shape. The mechanical strength of these superstructures is improvedbyweldingtheconstituentnanocrystalstogether. The organization of colloidal nanocrystals into ordered structures is a necessary step towards the fabrication of artificial solids and new devices. Superstructures can be built either by self-assembly directly in solution, or on a substrate following solvent evaporation or de-wetting 4 6 . A variety of forces can be involved in their formation: van der Waals (vdW) attractions between the particles, steric repulsions between the hydrophobic tails of the surfactants (often coating the nanocrystal surface), capillary forces during solvent evaporation, attractive depletion forces, Coulomb forces between surface charges or electric dipoles, and magnetic forces 1,3,5,7 12 . The assembly of many ordered threedimensional (3D) superstructures, for example, simple, binary, or ternary assemblies of spherical nanoparticles 13 17 , and smectic-like multilayers of hexagonally packed nanorods 18 , as well as liquid crystalline phases, is found to be solely driven by entropy 19 21 . More elaborate assemblies could be achieved from such simple building blocks by encoding information for the self-assembly in the surface pattern of the nanoparticles, for instance by DNA functionalization to modify the strength and directionality of particleparticle

404 citations

Journal ArticleDOI
TL;DR: An update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors is provided.
Abstract: The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors.

400 citations

Journal ArticleDOI
TL;DR: This review considers recent developments in the use of carbon nanoparticles and nanostructures as sensors and considers how they can be used to detect a diverse range of analytes.
Abstract: Carbon nanomaterials are among the most broadly discussed, researched and applied of synthetic nanomaterials. The structural diversity of these materials provides an array of unique electronic, magnetic and optical properties, which when combined with their robust chemistry and ease of manipulation, makes them attractive candidates for sensor applications. Furthermore, the biocompatibility exhibited by many carbon nanomaterials has seen them used as in vivo biosensors. Carbon nanotubes, graphene and carbon dots have come under intense scrutiny, as either discrete molecular-like sensors, or as components which can be integrated into devices. In this review we consider recent developments in the use of carbon nanoparticles and nanostructures as sensors and consider how they can be used to detect a diverse range of analytes.

400 citations

Journal ArticleDOI
02 Jan 2017
TL;DR: This paper provides an overview on the main additive manufacturing/3D printing technologies suitable for many satellite applications and, in particular, radio-frequency components.
Abstract: This paper provides an overview on the main additive manufacturing/3D printing technologies suitable for many satellite applications and, in particular, radio-frequency components. In fact, nowadays they have become capable of producing complex net-shaped or nearly net-shaped parts in materials that can be directly used as functional parts, including polymers, metals, ceramics, and composites. These technologies represent the solution for low-volume, high-value, and highly complex parts and products.

399 citations

Journal ArticleDOI
02 Nov 2018-ACS Nano
TL;DR: In this paper, the authors discuss synthesis and characterization of GBMs as well as human and environmental hazard assessment of GBM using in vitro and in vivo model systems with the aim to understand the properties that underlie the biological effects of these materials; not all GBMs are alike, and it is essential that disentangle the structure-activity relationships for this class of materials.
Abstract: Graphene and its derivatives are heralded as ‘miracle’ materials with manifold applications in different sectors of society from electronics to energy storage to medicine. The increasing exploitation of graphene-based materials (GBMs) necessitates a comprehensive evaluation of the potential impact of these materials on human health and the environment. Here we discuss synthesis and characterization of GBMs as well as human and environmental hazard assessment of GBMs using in vitro and in vivo model systems with the aim to understand the properties that underlie the biological effects of these materials; not all GBMs are alike, and it is essential that we disentangle the structure-activity relationships for this class of materials.

397 citations


Authors

Showing all 4601 results

NameH-indexPapersCitations
Marc G. Caron17367499802
Paolo Vineis134108886608
Michele Parrinello13363794674
Alex J. Barker132127384746
Tomaso Poggio13260888676
Shuai Liu129109580823
Giacomo Rizzolatti11729897242
Yehezkel Ben-Ari11045944293
Daniele Piomelli10450549009
Bruno Scrosati10358066572
Wolfgang J. Parak10246943307
Liberato Manna9849444780
Muhammad Imran94305351728
Ole Isacson9334530460
Luigi Ambrosio9376139688
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

92% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202313
2022109
20211,576
20201,618
20191,439
20181,381