scispace - formally typeset
Search or ask a question
Institution

Istituto Italiano di Tecnologia

FacilityGenoa, Italy
About: Istituto Italiano di Tecnologia is a facility organization based out in Genoa, Italy. It is known for research contribution in the topics: Robot & Humanoid robot. The organization has 4561 authors who have published 14595 publications receiving 437558 citations. The organization is also known as: Italian Institute of Technology & IIT.
Topics: Robot, Humanoid robot, Graphene, iCub, Nanoparticle


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the exact mechanism of the photoluminescence (PL) mechanism of TiO2 was investigated, focusing on which are the different states that trigger the PL activity and on identifying the specific recombination pathways acting in the two stableTiO2 polymorphs.
Abstract: Photoluminescence (PL) represents a sensitive tool for probing molecular adsorption and surface reactions in photocatalytic materials. Titanium dioxide (TiO2) is one of the most widely used photocatalysis, and clarifying its basic PL mechanism can give important information. However, differently from other electronic and surface processes, the actual PL mechanisms of TiO2 are not extensively studied. In this work, we address the topic by focusing our investigation on which are the different states that trigger the PL activity and on identifying the specific recombination pathways acting in the two stable TiO2 polymorphs (rutile and anatase). On the basis of our experimental results on PL emission, PL excitation, and oxygen-induced and photoinduced PL modifications, we sketch an interpretative scheme for both the polymorphs. Excitation-resolved PL and recombination quenching caused by molecular oxygen evidence distinct contributions to anatase PL, originating from different kinds of hole-trapping and elect...

180 citations

Journal ArticleDOI
TL;DR: Direct cell reprogramming enables direct conversion of fibroblasts into functional neurons and oligodendrocytes using a minimal set of cell-lineage-specific transcription factors and it is proved both by gene-expression profiling and functional tests that iAstrocytes are comparable to native brain astroCytes.
Abstract: Direct cell reprogramming enables direct conversion of fibroblasts into functional neurons and oligodendrocytes using a minimal set of cell-lineage-specific transcription factors. This approach is rapid and simple, generating the cell types of interest in one step. However, it remains unknown whether this technology can be applied to convert fibroblasts into astrocytes, the third neural lineage. Astrocytes play crucial roles in neuronal homeostasis, and their dysfunctions contribute to the origin and progression of multiple human diseases. Herein, we carried out a screening using several transcription factors involved in defining the astroglial cell fate and identified NFIA, NFIB, and SOX9 to be sufficient to convert with high efficiency embryonic and postnatal mouse fibroblasts into astrocytes (iAstrocytes). We proved both by gene-expression profiling and functional tests that iAstrocytes are comparable to native brain astrocytes. This protocol can be then employed to generate functional iAstrocytes for a wide range of experimental applications.

180 citations

Journal ArticleDOI
TL;DR: It was found that an air treatment induces a better charge separation and a lower carrier recombination, which in turn are responsible for an improvement in the PEC performance with respect to N2-treated core-shell materials.
Abstract: A fast and low-cost sol–gel synthesis used to deposit a shell of TiO2 anatase onto an array of vertically aligned ZnO nanowires (NWs) is reported in this paper. The influence of the annealing atmosphere (air or N2) and of the NWs preannealing process, before TiO2 deposition, on both the physicochemical characteristics and photoelectrochemical (PEC) performance of the resulting heterostructure, was studied. The efficient application of the ZnO@TiO2 core–shells for the PEC water-splitting reaction, under simulated solar light illumination (AM 1.5G) solar light illumination in basic media, is here reported for the first time. This application has had a dual function: to enhance the photoactivity of pristine ZnO NWs and to increase the photodegradation stability, because of the protective role of the TiO2 shell. It was found that an air treatment induces a better charge separation and a lower carrier recombination, which in turn are responsible for an improvement in the PEC performance with respect to N2-trea...

180 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reported a Rabi energy splitting (2ℏΩR) of 1.12 eV and record values of the coupling ratio up to 0.6-fold the material band gap in organic semiconductor microcavities and up to 1.5-fold in monolithic heterostructure organic light-emitting diodes working at room temperature.
Abstract: Exciton-polaritons are bosonic quasiparticles that arise from the normal mode splitting of photons in a microcavity and excitons in a semiconductor material. One of the most intriguing extensions of such a light–matter interaction is the so-called ultrastrong coupling regime. It is achieved when the Rabi frequency (ΩR, the energy exchange rate between the emitter and the resonant photonic mode) reaches a considerable fraction of the emitter transition frequency, ω0. Here, we report a Rabi energy splitting (2ℏΩR) of 1.12 eV and record values of the coupling ratio (2ΩR/ω0) up to 0.6-fold the material band gap in organic semiconductor microcavities and up to 0.5-fold in monolithic heterostructure organic light-emitting diodes working at room temperature. Furthermore, we show that with such a large coupling strength it is possible to undress the exciton homogeneous linewidth from its inhomogeneous broadening, which allows for an unprecedented narrow emission line (below the cavity finesse) for such organic LE...

180 citations

Journal ArticleDOI
TL;DR: In this article, the role of halogen bonding in controlling the performance of light-responsive supramolecular polymers is highlighted, and it is shown that light-induced surface patterning, a unique phenomenon occurring in azobenzene-containing polymers, is more effi cient in halogen-bonded polymer-azobenzenesene complexes than in the analogous hydrogen-bunded complexes.
Abstract: Halogen bonding is arguably the least exploited among the many noncovalent interactions used in dictating molecular self-assembly. However, its directionality renders it unique compared to ubiquitous hydrogen bonding. Here, the role of this directionality in controlling the performance of lightresponsive supramolecular polymers is highlighted. In particular, it is shown that light-induced surface patterning, a unique phenomenon occurring in azobenzene-containing polymers, is more effi cient in halogen-bonded polymer‐azobenzene complexes than in the analogous hydrogen-bonded complexes. A systematic study is performed on a series of azo dyes containing different halogen or hydrogen bonding donor moieties, complexed to poly(4vinylpyridine) backbone. Through single-atom substitution of the bond-donor, control of both the strength and the nature of the noncovalent interaction between the azobenzene units and the polymer backbone is achieved. Importantly, such substitution does not signifi cantly alter the electronic properties of the azobenzene units, hence providing us with unique tools in studying the structure‐performance relationships in the light-induced surface deformation process. The results represent the fi rst demonstration of light-responsive halogen-bonded polymer systems and also highlight the remarkable potential of halogen bonding in fundamental studies of photoresponsive azobenzenecontaining polymers.

179 citations


Authors

Showing all 4601 results

NameH-indexPapersCitations
Marc G. Caron17367499802
Paolo Vineis134108886608
Michele Parrinello13363794674
Alex J. Barker132127384746
Tomaso Poggio13260888676
Shuai Liu129109580823
Giacomo Rizzolatti11729897242
Yehezkel Ben-Ari11045944293
Daniele Piomelli10450549009
Bruno Scrosati10358066572
Wolfgang J. Parak10246943307
Liberato Manna9849444780
Muhammad Imran94305351728
Ole Isacson9334530460
Luigi Ambrosio9376139688
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

92% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

90% related

Carnegie Mellon University
104.3K papers, 5.9M citations

90% related

Georgia Institute of Technology
119K papers, 4.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202313
2022109
20211,576
20201,618
20191,439
20181,381