scispace - formally typeset
Search or ask a question
Institution

University of York

EducationYork, York, United Kingdom
About: University of York is a education organization based out in York, York, United Kingdom. It is known for research contribution in the topics: Population & Health care. The organization has 22089 authors who have published 56925 publications receiving 2458285 citations. The organization is also known as: York University & Ebor..


Papers
More filters
Journal ArticleDOI
TL;DR: Calcium Signals are identified as a central Paradigm in Stimulus–Response Coupling and are normally composed of elements that include calcium and Na6(SO4)2, Na2SO4, and Na2CO3.
Abstract: ### Calcium Signals: A Central Paradigm in Stimulus–Response Coupling Cells must respond to an array of environmental and developmental cues. The signaling networks that have evolved to generate appropriate cellular responses are varied and are normally composed of elements that include a

1,156 citations

Journal ArticleDOI

1,156 citations

Journal ArticleDOI
TL;DR: This evolving classification rationalises structural and mechanistic investigation, harnesses information from a wide variety of related enzymes to inform cell biology and overcomes recurrent problems in the functional prediction of glycosyltransferase-related open-reading frames.

1,155 citations

Journal ArticleDOI
TL;DR: It is shown that the coevolutionary dynamic can be envisaged as a directed random walk in the community's trait space and a quantitative description of this stochastic process in terms of a master equation is derived.
Abstract: In this paper we develop a dynamical theory of coevolution in ecological communities. The derivation explicitly accounts for the stochastic components of evolutionary change and is based on ecological processes at the level of the individual. We show that the coevolutionary dynamic can be envisaged as a directed random walk in the community's trait space. A quantitative description of this stochastic process in terms of a master equation is derived. By determining the first jump moment of this process we abstract the dynamic of the mean evolutionary path. To first order the resulting equation coincides with a dynamic that has frequently been assumed in evolutionary game theory. Apart from recovering this canonical equation we systematically establish the underlying assumptions. We provide higher order corrections and show that these can give rise to new, unexpected evolutionary effects including shifting evolutionary isoclines and evolutionary slowing down of mean paths as they approach evolutionary equilibria. Extensions of the derivation to more general ecological settings are discussed. In particular we allow for multi-trait coevolution and analyze coevolution under nonequilibrium population dynamics.

1,147 citations

Journal ArticleDOI
Kurt Lejaeghere1, Gustav Bihlmayer2, Torbjörn Björkman3, Torbjörn Björkman4, Peter Blaha5, Stefan Blügel2, Volker Blum6, Damien Caliste7, Ivano E. Castelli8, Stewart J. Clark9, Andrea Dal Corso10, Stefano de Gironcoli10, Thierry Deutsch7, J. K. Dewhurst11, Igor Di Marco12, Claudia Draxl13, Claudia Draxl14, Marcin Dulak15, Olle Eriksson12, José A. Flores-Livas11, Kevin F. Garrity16, Luigi Genovese7, Paolo Giannozzi17, Matteo Giantomassi18, Stefan Goedecker19, Xavier Gonze18, Oscar Grånäs20, Oscar Grånäs12, E. K. U. Gross11, Andris Gulans14, Andris Gulans13, Francois Gygi21, D. R. Hamann22, P. J. Hasnip23, Natalie Holzwarth24, Diana Iusan12, Dominik B. Jochym25, F. Jollet, Daniel M. Jones26, Georg Kresse27, Klaus Koepernik28, Klaus Koepernik29, Emine Kucukbenli8, Emine Kucukbenli10, Yaroslav Kvashnin12, Inka L. M. Locht30, Inka L. M. Locht12, Sven Lubeck13, Martijn Marsman27, Nicola Marzari8, Ulrike Nitzsche29, Lars Nordström12, Taisuke Ozaki31, Lorenzo Paulatto32, Chris J. Pickard33, Ward Poelmans1, Matt Probert23, Keith Refson34, Keith Refson25, Manuel Richter29, Manuel Richter28, Gian-Marco Rignanese18, Santanu Saha19, Matthias Scheffler35, Matthias Scheffler14, Martin Schlipf21, Karlheinz Schwarz5, Sangeeta Sharma11, Francesca Tavazza16, Patrik Thunström5, Alexandre Tkatchenko36, Alexandre Tkatchenko14, Marc Torrent, David Vanderbilt22, Michiel van Setten18, Veronique Van Speybroeck1, John M. Wills37, Jonathan R. Yates26, Guo-Xu Zhang38, Stefaan Cottenier1 
25 Mar 2016-Science
TL;DR: A procedure to assess the precision of DFT methods was devised and used to demonstrate reproducibility among many of the most widely used DFT codes, demonstrating that the precisionof DFT implementations can be determined, even in the absence of one absolute reference code.
Abstract: The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals. We conclude that predictions from recent codes and pseudopotentials agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Older methods, however, have less precise agreement. Our benchmark provides a framework for users and developers to document the precision of new applications and methodological improvements.

1,141 citations


Authors

Showing all 22432 results

NameH-indexPapersCitations
Cyrus Cooper2041869206782
Eric R. Kandel184603113560
Ian J. Deary1661795114161
Elio Riboli1581136110499
Claude Bouchard1531076115307
Robert Plomin151110488588
Kevin J. Gaston15075085635
John R. Hodges14981282709
Myrna M. Weissman149772108259
Jeffrey A. Lieberman14570685306
Howard L. Weiner144104791424
Dan J. Stein1421727132718
Jedd D. Wolchok140713123336
Bernard Henrissat139593100002
Joseph E. LeDoux13947891500
Network Information
Related Institutions (5)
University of Manchester
168K papers, 6.4M citations

95% related

University of Bristol
113.1K papers, 4.9M citations

95% related

University of Birmingham
115.3K papers, 4.3M citations

95% related

University College London
210.6K papers, 9.8M citations

95% related

King's College London
113.1K papers, 4.4M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023185
2022466
20213,259
20203,377
20193,032
20182,810