scispace - formally typeset
Search or ask a question
Institution

Waseda University

EducationTokyo, Japan
About: Waseda University is a education organization based out in Tokyo, Japan. It is known for research contribution in the topics: Catalysis & Large Hadron Collider. The organization has 24220 authors who have published 46859 publications receiving 837855 citations. The organization is also known as: Waseda daigaku & Sōdai.


Papers
More filters
Journal ArticleDOI
TL;DR: The successful synthesis of 1D mesoporous Pt motifs can be expected to be a new direction in the fabrication of superior electrocatalysts, according to traditional hard-templating method.
Abstract: of metals affords electrocatalystsshowing a superior performance because of their highporosity, large area per unit volume, and excellent activity–structure relationship. Therefore, the successful synthesis of1D mesoporous Pt motifs can be expected to be a newdirection in the fabrication of superior electrocatalysts. Thetraditional hard-templating method, which is widely used tosynthesize mesoporous carbon materials,

268 citations

Journal ArticleDOI
TL;DR: In this paper, the authors study the evolution of supernova core from the beginning of gravitational collapse of a 15Msolar star up to 1 second after core bounce and examine the influence of equation of state (EOS) on the postbounce evolution of shock wave in the late phase and the resulting thermal evolution of protoneutron star.
Abstract: We study the evolution of supernova core from the beginning of gravitational collapse of a 15Msolar star up to 1 second after core bounce. We present results of spherically symmetric simulations of core-collapse supernovae by solving general relativistic neutrino-radiation-hydrodynamics in the implicit time-differencing. We aim to explore the evolution of shock wave in a long term and investigate the formation of protoneutron star together with supernova neutrino signatures. These studies are done to examine the influence of equation of state (EOS) on the postbounce evolution of shock wave in the late phase and the resulting thermal evolution of protoneutron star. We make a comparison of two sets of EOS, that is, by Lattimer and Swesty (LS-EOS) and by Shen et al.(SH-EOS). We found that, for both EOSs, the core does not explode and the shock wave stalls similarly in the first 100 milliseconds after bounce. The revival of shock wave does not occur even after a long period in either cases. However, the recession of shock wave appears different beyond 200 milliseconds after bounce, having different thermal evolution of central core. A more compact protoneutron star is found for LS-EOS than SH-EOS with a difference in the central density by a factor of ~2 and a difference of ~10 MeV in the peak temperature. Resulting spectra of supernova neutrinos are different to the extent that may be detectable by terrestrial neutrino detectors.

268 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2916 moreInstitutions (196)
TL;DR: In this paper, a measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5 fb(-1) of proton-proton collisions data at root s = 7 TeV and 20.4 GeV.
Abstract: A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5 fb(-1) of proton-proton collisions data at root s = 7 TeV and 20.3 fb(-1) at root s = 8 TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be mu = 1.17 +/- 0.27 at the value of the Higgs boson mass measured by ATLAS, m(H) = 125.4 GeV. The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at this value of m(H). They are found to be mu(ggF) = 1.32 +/- 0.38, mu(VBF) = 0.8 +/- 0.7, mu(WH) = 1.0 +/- 1.6, mu(ZH) = 0.1(-0.1)(+3.7), and mu t (t) over barH = 1.6(-1.8)(+2.7), for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a W or Z boson or a top-quark pair, respectively. Compared with the previously published ATLAS analysis, the results reported here also benefit from a new energy calibration procedure for photons and the subsequent reduction of the systematic uncertainty on the diphoton mass resolution. No significant deviations from the predictions of the Standard Model are found.

268 citations

Journal ArticleDOI
TL;DR: A protein kinase that is yet to be identified is responsible for the activation of transcription factors and plays a key role in the responses of antiviral responses.
Abstract: Background Infection by virus or treatment with double-stranded RNA (dsRNA) results in the activation of transcription factors including IRF-3, IRF-7 and a pleiotropic regulator NF-kappaB by specific phosphorylation. These factors are important in triggering a cascade of antiviral responses. A protein kinase that is yet to be identified is responsible for the activation of these factors and plays a key role in the responses. Results The signal cascade was analysed using sensitive assays for the activation of IRF-3 and NF-kappaB, and various inhibitors. We found that the activation of IRF-3 and NF-kappaB by dsRNA or virus involves a process that is sensitive to Geldanamycin. Although the induction of NF-kappaB by dsRNA/virus and TNF-alpha involves common downstream pathways including IKK activation, the upstream, Geldanamycin-sensitive process was unique to the dsRNA/virus-induced signal. By an in vitro assay using cell extract, we found an inducible protein kinase activity with physiological specificity of IRF-3 phosphorylation. Furthermore, the same extract specifically phosphorylated IRF-7 in a similar manner. Conclusions Double-stranded RNA or virus triggers a specific signal cascade that results in the activation of the IRF-3/-7 kinase we detected, which corresponds to the long-sought signalling machinery that is responsible for triggering the early phase of innate response. The signal branches to a common NF-kappaB activation cascade, thus resulting in the activation of a set of critical transcription factors for the response.

266 citations

Journal ArticleDOI
TL;DR: GnIH in birds and mammals appears to act at all levels of the hypothalamo-pituitary-gonadal (HPG) axis, and possibly over different time-frames, and GnIH and its homologs appear to act as key neurohormones controlling vertebrate reproduction.

265 citations


Authors

Showing all 24378 results

NameH-indexPapersCitations
Yusuke Nakamura1792076160313
Yoshio Bando147123480883
Charles Maguire142119795026
Kazunori Kataoka13890870412
Senta Greene134134690697
Intae Yu134137289870
Kohei Yorita131138991177
Wei Xie128128177097
Susumu Kitagawa12580969594
Leon O. Chua12282471612
Jun Kataoka12160354274
S. Youssef12068365110
Katsuhiko Mikoshiba12086662394
Yusuke Yamauchi117100051685
Teruo Okano11747647081
Network Information
Related Institutions (5)
Tokyo Institute of Technology
101.6K papers, 2.3M citations

96% related

University of Tsukuba
79.4K papers, 1.9M citations

94% related

University of Tokyo
337.5K papers, 10.1M citations

94% related

Osaka University
185.6K papers, 5.1M citations

94% related

Nagoya University
128.2K papers, 3.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202380
2022237
20212,348
20202,467
20192,368
20182,289