scispace - formally typeset
Search or ask a question

Showing papers in "Stem cell reports in 2018"


Journal ArticleDOI
TL;DR: It is shown that hPSC-derived kidney organoids, derived in fully defined medium conditions and in the absence of any exogenous vascular endothelial growth factor, develop host-derived vascularization, demonstrating that functional vascularization is required for progressive morphogenesis of human kidney organs.
Abstract: Human pluripotent stem cell (hPSC)-derived kidney organoids may facilitate disease modeling and the generation of tissue for renal replacement. Long-term application, however, will require transferability between hPSC lines and significant improvements in organ maturation. A key question is whether time or a patent vasculature is required for ongoing morphogenesis. Here, we show that hPSC-derived kidney organoids, derived in fully defined medium conditions and in the absence of any exogenous vascular endothelial growth factor, develop host-derived vascularization. In vivo imaging of organoids under the kidney capsule confirms functional glomerular perfusion as well as connection to pre-existing vascular networks in the organoids. Wide-field electron microscopy demonstrates that transplantation results in formation of a glomerular basement membrane, fenestrated endothelial cells, and podocyte foot processes. Furthermore, compared with non-transplanted organoids, polarization and segmental specialization of tubular epithelium are observed. These data demonstrate that functional vascularization is required for progressive morphogenesis of human kidney organoids.

250 citations


Journal ArticleDOI
TL;DR: Long-term expanding organoid cultures are established that grow and differentiate under defined culture conditions, allowing future human placental disease modeling.
Abstract: Summary Defective placentation is the underlying cause of various pregnancy complications, such as severe intrauterine growth restriction and preeclampsia. However, studies on human placental development are hampered by the lack of a self-renewing in vitro model that would recapitulate formation of trophoblast progenitors and differentiated subtypes, syncytiotrophoblast (STB) and invasive extravillous trophoblast (EVT), in a 3D orientation. Hence, we established long-term expanding organoid cultures from purified first-trimester cytotrophoblasts (CTBs). Molecular analyses revealed that the CTB organoid cultures (CTB-ORGs) express markers of trophoblast stemness and proliferation and are highly similar to primary CTBs at the level of global gene expression. Whereas CTB-ORGs spontaneously generated STBs, withdrawal of factors for self-renewal induced trophoblast outgrowth, expressing the EVT progenitor marker NOTCH1, and provoked formation of adjacent, distally located HLA-G+ EVTs. In summary, we established human CTB-ORGs that grow and differentiate under defined culture conditions, allowing future human placental disease modeling.

235 citations


Journal ArticleDOI
TL;DR: Molecular and cellular comparisons revealed that hPSC-derived bud tip-like cells are highly similar to native lung bud tip progenitors.
Abstract: The current study aimed to understand the developmental mechanisms regulating bud tip progenitor cells in the human fetal lung, which are present during branching morphogenesis, and to use this information to induce a bud tip progenitor-like population from human pluripotent stem cells (hPSCs) in vitro. We identified cues that maintained isolated human fetal lung epithelial bud tip progenitor cells in vitro and induced three-dimensional hPSC-derived organoids with bud tip-like domains. Bud tip-like domains could be isolated, expanded, and maintained as a nearly homogeneous population. Molecular and cellular comparisons revealed that hPSC-derived bud tip-like cells are highly similar to native lung bud tip progenitors. hPSC-derived epithelial bud tip-like structures survived in vitro for over 16 weeks, could be easily frozen and thawed, maintained multilineage potential, and successfully engrafted into the airways of immunocompromised mouse lungs, where they persisted for up to 6 weeks and gave rise to several lung epithelial lineages.

165 citations


Journal ArticleDOI
TL;DR: CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis.
Abstract: Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE) cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence.

163 citations


Journal ArticleDOI
TL;DR: It is shown that deletion of HNF1B, a transcription factor linked to congenital kidney defects, interferes with tubulogenesis, validating the experimental system for studying renal developmental biology.
Abstract: Kidney organoids made from pluripotent stem cells have the potential to revolutionize how kidney development, disease, and injury are studied Current protocols are technically complex, suffer from poor reproducibility, and have high reagent costs that restrict scalability To overcome some of these issues, we have established a simple, inexpensive, and robust method to grow kidney organoids in bulk from human induced pluripotent stem cells Our organoids develop tubular structures by day 8 and show optimal tissue morphology at day 14 A comparison with fetal human kidneys suggests that day-14 organoid tissue most closely resembles late capillary loop stage nephrons We show that deletion of HNF1B, a transcription factor linked to congenital kidney defects, interferes with tubulogenesis, validating our experimental system for studying renal developmental biology Taken together, our protocol provides a fast, efficient, and cost-effective method for generating large quantities of human fetal kidney tissue, enabling the study of normal and aberrant kidney development

159 citations


Journal ArticleDOI
TL;DR: It is demonstrated that bioreactors can accelerate and improve organoid growth and differentiation for modeling retinal disease and evaluation of therapies.
Abstract: Summary Pluripotent stem cells can be differentiated into 3D retinal organoids, with major cell types self-patterning into a polarized, laminated architecture. In static cultures, organoid development may be hindered by limitations in diffusion of oxygen and nutrients. Herein, we report a bioprocess using rotating-wall vessel (RWV) bioreactors to culture retinal organoids derived from mouse pluripotent stem cells. Organoids in RWV demonstrate enhanced proliferation, with well-defined morphology and improved differentiation of neurons including ganglion cells and S-cone photoreceptors. Furthermore, RWV organoids at day 25 (D25) reveal similar maturation and transcriptome profile as those at D32 in static culture, closely recapitulating spatiotemporal development of postnatal day 6 mouse retina in vivo . Interestingly, however, retinal organoids do not differentiate further under any in vitro condition tested here, suggesting additional requirements for functional maturation. Our studies demonstrate that bioreactors can accelerate and improve organoid growth and differentiation for modeling retinal disease and evaluation of therapies.

140 citations


Journal ArticleDOI
TL;DR: Contractile work contributes to metabolic maturation of hiPSC-CMs, which exhibited the principal ability to use glucose, lactate, and fatty acids as energy substrates irrespective of culture format.
Abstract: Energy metabolism is a key aspect of cardiomyocyte biology. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a promising tool for biomedical application, but they are immature and have not undergone metabolic maturation related to early postnatal development. To assess whether cultivation of hiPSC-CMs in 3D engineered heart tissue format leads to maturation of energy metabolism, we analyzed the mitochondrial and metabolic state of 3D hiPSC-CMs and compared it with 2D culture. 3D hiPSC-CMs showed increased mitochondrial mass, DNA content, and protein abundance (proteome). While hiPSC-CMs exhibited the principal ability to use glucose, lactate, and fatty acids as energy substrates irrespective of culture format, hiPSC-CMs in 3D performed more oxidation of glucose, lactate, and fatty acid and less anaerobic glycolysis. The increase in mitochondrial mass and DNA in 3D was diminished by pharmacological reduction of contractile force. In conclusion, contractile work contributes to metabolic maturation of hiPSC-CMs.

138 citations


Journal ArticleDOI
TL;DR: Methods to trace hPSC-derived kidney precursors that formed functioning nephrons in vivo are developed, critical steps toward using hPSCs to model and treat kidney diseases.
Abstract: Human pluripotent stem cells (hPSCs) hold great promise for understanding kidney development and disease. We reproducibly differentiated three genetically distinct wild-type hPSC lines to kidney precursors that underwent rudimentary morphogenesis in vitro. They expressed nephron and collecting duct lineage marker genes, several of which are mutated in human kidney disease. Lentiviral-transduced hPSCs expressing reporter genes differentiated similarly to controls in vitro. Kidney progenitors were subcutaneously implanted into immunodeficient mice. By 12 weeks, they formed organ-like masses detectable by bioluminescence imaging. Implants included perfused glomeruli containing human capillaries, podocytes with regions of mature basement membrane, and mesangial cells. After intravenous injection of fluorescent low-molecular-weight dextran, signal was detected in tubules, demonstrating uptake from glomerular filtrate. Thus, we have developed methods to trace hPSC-derived kidney precursors that formed functioning nephrons in vivo. These advances beyond in vitro culture are critical steps toward using hPSCs to model and treat kidney diseases.

129 citations


Journal ArticleDOI
TL;DR: iPSC-MSC transplantation significantly reduced T helper 2 cytokines, attenuated the mitochondrial dysfunction of epithelial cells, and alleviated asthma inflammation in mice, providing a therapeutic strategy for targeting asthma inflammation.
Abstract: Summary We previously identified an immunomodulatory role of human induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (MSCs) in asthmatic inflammation. Mitochondrial transfer from bone marrow MSCs to epithelial cells can result in the attenuation of acute lung injury in mice. However, the effects of mitochondrial transfer from iPSC-MSCs to epithelial cells in asthma and the mechanisms underlying these effects are unclear. We found that iPSC-MSC transplantation significantly reduced T helper 2 cytokines, attenuated the mitochondrial dysfunction of epithelial cells, and alleviated asthma inflammation in mice. Tunneling nanotubes (TNTs) were formed between iPSC-MSCs and epithelial cells, and mitochondrial transfer from iPSC-MSCs to epithelial cells via TNTs was observed both in vitro and in mice. Overexpression or silencing of connexin 43 (CX43) in iPSC-MSCs demonstrated that CX43 plays a critical role in the regulation of TNT formation by mediating mitochondrial transfer between iPSC-MSCs and epithelial cells. This study provides a therapeutic strategy for targeting asthma inflammation.

119 citations


Journal ArticleDOI
TL;DR: This study shows that multi-center collaborations can expose systematic biases and identify critical factors to be standardized when publishing novel protocols, contributing to increased cross-site reproducibility.
Abstract: Reproducibility in molecular and cellular studies is fundamental to scientific discovery To establish the reproducibility of a well-defined long-term neuronal differentiation protocol, we repeated the cellular and molecular comparison of the same two iPSC lines across five distinct laboratories Despite uncovering acceptable variability within individual laboratories, we detect poor cross-site reproducibility of the differential gene expression signature between these two lines Factor analysis identifies the laboratory as the largest source of variation along with several variation-inflating confounders such as passaging effects and progenitor storage Single-cell transcriptomics shows substantial cellular heterogeneity underlying inter-laboratory variability and being responsible for biases in differential gene expression inference Factor analysis-based normalization of the combined dataset can remove the nuisance technical effects, enabling the execution of robust hypothesis-generating studies Our study shows that multi-center collaborations can expose systematic biases and identify critical factors to be standardized when publishing novel protocols, contributing to increased cross-site reproducibility

119 citations


Journal ArticleDOI
TL;DR: It is demonstrated that CD73+ photoreceptor precursors can be isolated in large numbers and transplanted into rat eyes, showing capacity to survive and mature in close proximity to host inner retina of a model ofPhotoreceptor degeneration.
Abstract: Photoreceptor degenerative diseases are a major cause of blindness for which cell replacement is one of the most encouraging strategies. For stem cell-based therapy using human induced pluripotent stem cells (hiPSCs), it is crucial to obtain a homogenous photoreceptor cell population. We confirmed that the cell surface antigen CD73 is exclusively expressed in hiPSC-derived photoreceptors by generating a fluorescent cone rod homeobox (Crx) reporter hiPSC line using CRISPR/Cas9 genome editing. We demonstrated that CD73 targeting by magnetic-activated cell sorting (MACS) is an effective strategy to separate a safe population of transplantable photoreceptors. CD73+ photoreceptor precursors can be isolated in large numbers and transplanted into rat eyes, showing capacity to survive and mature in close proximity to host inner retina of a model of photoreceptor degeneration. These data demonstrate that CD73+ photoreceptor precursors hold great promise for a future safe clinical translation.

Journal ArticleDOI
TL;DR: Stem cell-derived microglia are used to study the consequences of missense mutations in the microglial-expressed protein triggering receptor expressed on myeloid cells 2 (TREM2), which are causal for frontotemporal dementia-like syndrome and Nasu-Hakola disease.
Abstract: The derivation of microglia from human stem cells provides systems for understanding microglial biology and enables functional studies of disease-causing mutations. We describe a robust method for the derivation of human microglia from stem cells, which are phenotypically and functionally comparable with primary microglia. We used stem cell-derived microglia to study the consequences of missense mutations in the microglial-expressed protein triggering receptor expressed on myeloid cells 2 (TREM2), which are causal for frontotemporal dementia-like syndrome and Nasu-Hakola disease. We find that mutant TREM2 accumulates in its immature form, does not undergo typical proteolysis, and is not trafficked to the plasma membrane. However, in the absence of plasma membrane TREM2, microglia differentiate normally, respond to stimulation with lipopolysaccharide, and are phagocytically competent. These data indicate that dementia-associated TREM2 mutations have subtle effects on microglia biology, consistent with the adult onset of disease in individuals with these mutations.

Journal ArticleDOI
TL;DR: Genetic correction of the single amino acid mutation restored NEPHRIN localization and phosphorylation, colocalization of other SD-associated proteins, and SD formation.
Abstract: Mutations in the NPHS1 gene, which encodes NEPHRIN, cause congenital nephrotic syndrome, resulting from impaired slit diaphragm (SD) formation in glomerular podocytes. However, methods for SD reconstitution have been unavailable, thereby limiting studies in the field. In the present study, we established human induced pluripotent stem cells (iPSCs) from a patient with an NPHS1 missense mutation, and reproduced the SD formation process using iPSC-derived kidney organoids. The mutant NEPHRIN failed to become localized on the cell surface for pre-SD domain formation in the induced podocytes. Upon transplantation, the mutant podocytes developed foot processes, but exhibited impaired SD formation. Genetic correction of the single amino acid mutation restored NEPHRIN localization and phosphorylation, colocalization of other SD-associated proteins, and SD formation. Thus, these kidney organoids from patient-derived iPSCs identified SD abnormalities in the podocytes at the initial phase of congenital nephrotic disease.

Journal ArticleDOI
TL;DR: A serum-free protocol to differentiate human induced pluripotent stem cells (hiPSCs) into astrocytes is developed and it is revealed that this model provides ideal conditions for in-depth and unbiased characterization ofAstrocyte reactivity in neuroinflammatory conditions.
Abstract: Summary Recent studies highlighted the importance of astrocytes in neuroinflammatory diseases, interacting closely with other CNS cells but also with the immune system. However, due to the difficulty in obtaining human astrocytes, their role in these pathologies is still poorly characterized. Here, we develop a serum-free protocol to differentiate human induced pluripotent stem cells (hiPSCs) into astrocytes. Gene expression and functional assays show that our protocol consistently yields a highly enriched population of resting mature astrocytes across the 13 hiPSC lines differentiated. Using this model, we first highlight the importance of serum-free media for astrocyte culture to generate resting astrocytes. Second, we assess the astrocytic response to IL-1β, TNF-α, and IL-6, all cytokines important in neuroinflammation, such as multiple sclerosis. Our study reveals very specific profiles of reactive astrocytes depending on the triggering stimulus. This model provides ideal conditions for in-depth and unbiased characterization of astrocyte reactivity in neuroinflammatory conditions.

Journal ArticleDOI
TL;DR: The results show that the vascular system has specific maturation effects on spinal cord neural tissue, and the use of Organ-Chips can move stem cell models closer to an in vivo condition.
Abstract: Summary Human stem cell-derived models of development and neurodegenerative diseases are challenged by cellular immaturity in vitro . Microengineered organ-on-chip (or Organ-Chip) systems are designed to emulate microvolume cytoarchitecture and enable co-culture of distinct cell types. Brain microvascular endothelial cells (BMECs) share common signaling pathways with neurons early in development, but their contribution to human neuronal maturation is largely unknown. To study this interaction and influence of microculture, we derived both spinal motor neurons and BMECs from human induced pluripotent stem cells and observed increased calcium transient function and Chip-specific gene expression in Organ-Chips compared with 96-well plates. Seeding BMECs in the Organ-Chip led to vascular-neural interaction and specific gene activation that further enhanced neuronal function and in vivo -like signatures. The results show that the vascular system has specific maturation effects on spinal cord neural tissue, and the use of Organ-Chips can move stem cell models closer to an in vivo condition.

Journal ArticleDOI
TL;DR: A CRISPR gene editing strategy to insert a protein tag and premature termination sites creating an induced pluripotent stem cell knockout resource for functional studies of ten ASD-relevant genes resulted in a consistent reduction in synaptic activity, including reduced spontaneous excitatory postsynaptic current frequencies in AFF2/FMR2-, ASTN2-, ATRX-, KCNQ2-, and SCN2A-null neurons.
Abstract: Autism spectrum disorder (ASD) is phenotypically and genetically heterogeneous. We present a CRISPR gene editing strategy to insert a protein tag and premature termination sites creating an induced pluripotent stem cell (iPSC) knockout resource for functional studies of ten ASD-relevant genes (AFF2/FMR2, ANOS1, ASTN2, ATRX, CACNA1C, CHD8, DLGAP2, KCNQ2, SCN2A, TENM1). Neurogenin 2 (NGN2)-directed induction of iPSCs allowed production of excitatory neurons, and mutant proteins were not detectable. RNA sequencing revealed convergence of several neuronal networks. Using both patch-clamp and multi-electrode array approaches, the electrophysiological deficits measured were distinct for different mutations. However, they culminated in a consistent reduction in synaptic activity, including reduced spontaneous excitatory postsynaptic current frequencies in AFF2/FMR2-, ASTN2-, ATRX-, KCNQ2-, and SCN2A-null neurons. Despite ASD susceptibility genes belonging to different gene ontologies, isogenic stem cell resources can reveal common functional phenotypes, such as reduced functional connectivity.

Journal ArticleDOI
TL;DR: The results highlight single-cell analyses to characterize tissue heterogeneity, even in marker-enriched populations, and identify genes and pathways that define this heterogeneity.
Abstract: During development, the mammary gland undergoes extensive remodeling driven by stem cells. Breast cancers are also hierarchically organized and driven by cancer stem cells characterized by CD44+CD24low/- or aldehyde dehydrogenase (ALDH) expression. These markers identify mesenchymal and epithelial populations both capable of tumor initiation. Less is known about these populations in non-cancerous mammary glands. From RNA sequencing, ALDH+ and ALDH-CD44+CD24- human mammary cells have epithelial-like and mesenchymal-like characteristics, respectively, with some co-expressing ALDH+ and CD44+CD24- by flow cytometry. At the single-cell level, these cells have the greatest mammosphere-forming capacity and express high levels of stemness and epithelial-to-mesenchymal transition-associated genes including ID1, SOX2, TWIST1, and ZEB2. We further identify single ALDH+ cells with a hybrid epithelial/mesenchymal phenotype that express genes associated with aggressive triple-negative breast cancers. These results highlight single-cell analyses to characterize tissue heterogeneity, even in marker-enriched populations, and identify genes and pathways that define this heterogeneity.

Journal ArticleDOI
TL;DR: It is concluded that adult human pancreatic tissue has potential for expansion into 3D structures harboring progenitor cells with endocrine differentiation potential.
Abstract: Summary Generating an unlimited source of human insulin-producing cells is a prerequisite to advance β cell replacement therapy for diabetes. Here, we describe a 3D culture system that supports the expansion of adult human pancreatic tissue and the generation of a cell subpopulation with progenitor characteristics. These cells display high aldehyde dehydrogenase activity (ALDH hi ), express pancreatic progenitors markers ( PDX1 , PTF1A , CPA1 , and MYC ), and can form new organoids in contrast to ALDH lo cells. Interestingly, gene expression profiling revealed that ALDH hi cells are closer to human fetal pancreatic tissue compared with adult pancreatic tissue. Endocrine lineage markers were detected upon in vitro differentiation. Engrafted organoids differentiated toward insulin-positive (INS + ) cells, and circulating human C-peptide was detected upon glucose challenge 1 month after transplantation. Engrafted ALDH hi cells formed INS + cells. We conclude that adult human pancreatic tissue has potential for expansion into 3D structures harboring progenitor cells with endocrine differentiation potential.

Journal ArticleDOI
TL;DR: Right atrial engineered heart tissue (RA-EHT) is a model of human atrium that may be useful in preclinical drug screening and reflected differences between human atrial and ventricular muscle preparations.
Abstract: Cardiomyocytes (CMs) generated from human induced pluripotent stem cells (hiPSCs) are under investigation for their suitability as human models in preclinical drug development. Antiarrhythmic drug development focuses on atrial biology for the treatment of atrial fibrillation. Here we used recent retinoic acid-based protocols to generate atrial CMs from hiPSCs and establish right atrial engineered heart tissue (RA-EHT) as a 3D model of human atrium. EHT from standard protocol-derived hiPSC-CMs (Ctrl-EHT) and intact human muscle strips served as comparators. RA-EHT exhibited higher mRNA and protein concentrations of atrial-selective markers, faster contraction kinetics, lower force generation, shorter action potential duration, and higher repolarization fraction than Ctrl-EHTs. In addition, RA-EHTs but not Ctrl-EHTs responded to pharmacological manipulation of atrial-selective potassium currents. RA- and Ctrl-EHTs' behavior reflected differences between human atrial and ventricular muscle preparations. Taken together, RA-EHT is a model of human atrium that may be useful in preclinical drug screening.

Journal ArticleDOI
TL;DR: It is reported that clinical-stage cardiac progenitor cells, known as cardiosphere-derived cells (CDCs), improve cardiac and skeletal myopathy in the mdx mouse model of DMD and transiently restored partial expression of full-length dystrophin in mdx mice.
Abstract: Genetic deficiency of dystrophin leads to disability and premature death in Duchenne muscular dystrophy (DMD), affecting the heart as well as skeletal muscle. Here, we report that clinical-stage cardiac progenitor cells, known as cardiosphere-derived cells (CDCs), improve cardiac and skeletal myopathy in the mdx mouse model of DMD. Injection of CDCs into the hearts of mdx mice augments cardiac function, ambulatory capacity, and survival. Exosomes secreted by human CDCs reproduce the benefits of CDCs in mdx mice and in human induced pluripotent stem cell-derived Duchenne cardiomyocytes. Surprisingly, CDCs and their exosomes also transiently restored partial expression of full-length dystrophin in mdx mice. The findings further motivate the testing of CDCs in Duchenne patients, while identifying exosomes as next-generation therapeutic candidates.

Journal ArticleDOI
TL;DR: The results of this study describe the derivation of RGC subtypes from hPSCs and will support the future exploration of phenotypic and functional diversity within human RGCs.
Abstract: Retinal ganglion cells (RGCs) are the projection neurons of the retina and transmit visual information to postsynaptic targets in the brain. While this function is shared among nearly all RGCs, this class of cell is remarkably diverse, comprised of multiple subtypes. Previous efforts have identified numerous RGC subtypes in animal models, but less attention has been paid to human RGCs. Thus, efforts of this study examined the diversity of RGCs differentiated from human pluripotent stem cells (hPSCs) and characterized defined subtypes through the expression of subtype-specific markers. Further investigation of these subtypes was achieved using single-cell transcriptomics, confirming the combinatorial expression of molecular markers associated with these subtypes, and also provided insight into more subtype-specific markers. Thus, the results of this study describe the derivation of RGC subtypes from hPSCs and will support the future exploration of phenotypic and functional diversity within human RGCs.

Journal ArticleDOI
TL;DR: It is found that material transfer accounts for a significant proportion of rescued cells following cone transplantation into non-degenerative hosts, and confirms the occurrence of photoreceptor integration in certain models of retinal degeneration and demonstrates the importance of the host environment in determining transplantation outcome.
Abstract: Human vision relies heavily upon cone photoreceptors, and their loss results in permanent visual impairment. Transplantation of healthy photoreceptors can restore visual function in models of inherited blindness, a process previously understood to arise by donor cell integration within the host retina. However, we and others recently demonstrated that donor rod photoreceptors engage in material transfer with host photoreceptors, leading to the host cells acquiring proteins otherwise expressed only by donor cells. We sought to determine whether stem cell- and donor-derived cones undergo integration and/or material transfer. We find that material transfer accounts for a significant proportion of rescued cells following cone transplantation into non-degenerative hosts. Strikingly, however, substantial numbers of cones integrated into the Nrl-/- and Prph2rd2/rd2, but not Nrl-/-;RPE65R91W/R91W, murine models of retinal degeneration. This confirms the occurrence of photoreceptor integration in certain models of retinal degeneration and demonstrates the importance of the host environment in determining transplantation outcome.

Journal ArticleDOI
TL;DR: This study characterizes the single-cell transcriptomes of mouse and hESC-derived endocrine progenitors and serves as a resource for improving the formation of functional β-like cells from hESCs for diabetes treatment.
Abstract: Summary Human embryonic stem cells (hESCs) are a potential unlimited source of insulin-producing β cells for diabetes treatment. A greater understanding of how β cells form during embryonic development will improve current hESC differentiation protocols. All pancreatic endocrine cells, including β cells, are derived from Neurog3-expressing endocrine progenitors. This study characterizes the single-cell transcriptomes of 6,905 mouse embryonic day (E) 15.5 and 6,626 E18.5 pancreatic cells isolated from Neurog3-Cre; Rosa26mT/mG embryos, allowing for enrichment of endocrine progenitors (yellow; tdTomato + EGFP) and endocrine cells (green; EGFP). Using a NEUROG3-2A-eGFP CyT49 hESC reporter line (N5-5), 4,462 hESC-derived GFP+ cells were sequenced. Differential expression analysis revealed enrichment of markers that are consistent with progenitor, endocrine, or previously undescribed cell-state populations. This study characterizes the single-cell transcriptomes of mouse and hESC-derived endocrine progenitors and serves as a resource ( https://lynnlab.shinyapps.io/embryonic_pancreas ) for improving the formation of functional β-like cells from hESCs.

Journal ArticleDOI
TL;DR: The genetic inactivation of CD73 in OC cells revealed that this molecule is causally involved in sphere formation and tumor initiation, thus emerging as a driver of OCIC function and representing a therapeutic target for innovative treatments aimed at OC eradication.
Abstract: Summary Cancer-initiating cells (CICs) have been implicated in tumor development and aggressiveness. In ovarian carcinoma (OC), CICs drive tumor formation, dissemination, and recurrence, as well as drug resistance, thus accounting for the high death-to-incidence ratio of this neoplasm. However, the molecular mechanisms that underlie such a pathogenic role of ovarian CICs (OCICs) remain elusive. Here, we have capitalized on primary cells either from OC or from its tissues of origin to obtain the transcriptomic profile associated with OCICs. Among the genes differentially expressed in OCICs, we focused on CD73, which encodes the membrane-associated 5′-ectonucleotidase. The genetic inactivation of CD73 in OC cells revealed that this molecule is causally involved in sphere formation and tumor initiation, thus emerging as a driver of OCIC function. Furthermore, functional inhibition of CD73 via either a chemical compound or a neutralizing antibody reduced sphere formation and tumorigenesis, highlighting the druggability of CD73 in the context of OCIC-directed therapies. The biological function of CD73 in OCICs required its enzymatic activity and involved adenosine signaling. Mechanistically, CD73 promotes the expression of stemness and epithelial-mesenchymal transition-associated genes, implying a regulation of OCIC function at the transcriptional level. CD73, therefore, is involved in OCIC biology and may represent a therapeutic target for innovative treatments aimed at OC eradication.

Journal ArticleDOI
TL;DR: A simple and efficient method to efficiently generate astrocytes in 4–7 weeks by using CRISPR/Cas9-mediated inducible expression of NFIA or NFIA plus SOX9 in hPSCs and a strategy to generate region-specificAstrocyte subtypes by combining differentiation of regional progenitors and transgenic induction of astroCytes.
Abstract: Summary Differentiation of astrocytes from human pluripotent stem cells (hPSCs) is a tedious and variable process. This hampers the study of hPSC-generated astrocytes in disease processes and drug development. By using CRISPR/Cas9-mediated inducible expression of NFIA or NFIA plus SOX9 in hPSCs, we developed a method to efficiently generate astrocytes in 4–7 weeks. The astrocytic identity of the induced cells was verified by their characteristic molecular and functional properties as well as after transplantation. Furthermore, we developed a strategy to generate region-specific astrocyte subtypes by combining differentiation of regional progenitors and transgenic induction of astrocytes. This simple and efficient method offers a new opportunity to study the fundamental biology of human astrocytes and their roles in disease processes.

Journal ArticleDOI
TL;DR: An absolute requirement for either MyoD or Myf5 in muscle regeneration is demonstrated and it is indicated that their expression after injury stabilizes myogenic identity and confers the capacity for muscle differentiation.
Abstract: MyoD and Myf5 are fundamental regulators of skeletal muscle lineage determination in the embryo, and their expression is induced in satellite cells following muscle injury. MyoD and Myf5 are also expressed by satellite cell precursors developmentally, although the relative contribution of historical and injury-induced expression to satellite cell function is unknown. We show that satellite cells lacking both MyoD and Myf5 (double knockout [dKO]) are maintained with aging in uninjured muscle. However, injured muscle fails to regenerate and dKO satellite cell progeny accumulate in damaged muscle but do not undergo muscle differentiation. dKO satellite cell progeny continue to express markers of myoblast identity, although their myogenic programming is labile, as demonstrated by dramatic morphological changes and increased propensity for non-myogenic differentiation. These data demonstrate an absolute requirement for either MyoD or Myf5 in muscle regeneration and indicate that their expression after injury stabilizes myogenic identity and confers the capacity for muscle differentiation.

Journal ArticleDOI
TL;DR: It is demonstrated that cyanoacrylamide-based coumarin derivatives are ratiometric probes suitable for the real-time monitoring of glutathione levels in living SCs and revealed that glutathion levels are heterogeneous among subcellular organelles and among individual cells and show dynamic changes and heterogeneity in repopulating SCs depending on oxidative stress or culture conditions.
Abstract: Summary The core functions of stem cells (SCs) are critically regulated by their cellular redox status. Glutathione is the most abundant non-protein thiol functioning as an antioxidant and a redox regulator. However, an investigation into the relationship between glutathione-mediated redox capacity and SC activities is hindered by lack of probe. Here, we demonstrate that cyanoacrylamide-based coumarin derivatives are ratiometric probes suitable for the real-time monitoring of glutathione levels in living SCs. These probes revealed that glutathione levels are heterogeneous among subcellular organelles and among individual cells and show dynamic changes and heterogeneity in repopulating SCs depending on oxidative stress or culture conditions. Importantly, a subpopulation of SCs with high glutathione levels exhibited increased stemness and migration activities in vitro and showed improved therapeutic efficiency in treating asthma. Our results indicate that high glutathione levels are required for maintaining SC functions, and monitoring glutathione dynamics and heterogeneity can advance our understanding of the cellular responses to oxidative stress.

Journal ArticleDOI
TL;DR: It is demonstrated that FUS-eGFP is recruited into SGs and that P525L profoundly alters their dynamics and it is corroborate that induction of autophagy significantly increases survival and a number of brain-penetrant anti-depressants and anti-psychotic drugs could be repurposed as potential ALS treatments.
Abstract: Summary Perturbations in stress granule (SG) dynamics may be at the core of amyotrophic lateral sclerosis (ALS). Since SGs are membraneless compartments, modeling their dynamics in human motor neurons has been challenging, thus hindering the identification of effective therapeutics. Here, we report the generation of isogenic induced pluripotent stem cells carrying wild-type and P525L FUS-eGFP. We demonstrate that FUS-eGFP is recruited into SGs and that P525L profoundly alters their dynamics. With a screening campaign, we demonstrate that PI3K/AKT/mTOR pathway inhibition increases autophagy and ameliorates SG phenotypes linked to P525L FUS by reducing FUS-eGFP recruitment into SGs. Using a Drosophila model of FUS-ALS, we corroborate that induction of autophagy significantly increases survival. Finally, by screening clinically approved drugs for their ability to ameliorate FUS SG phenotypes, we identify a number of brain-penetrant anti-depressants and anti-psychotics that also induce autophagy. These drugs could be repurposed as potential ALS treatments.

Journal ArticleDOI
TL;DR: It is suggested that impaired migration of DS GABAergic neurons may contribute to the reduced number of interneurons in the cerebral cortex and hippocampus in DS patients.
Abstract: Summary The brain of Down syndrome (DS) patients exhibits fewer interneurons in the cerebral cortex, but its underlying mechanism remains unknown. By morphometric analysis of cortical interneurons generated from DS and euploid induced pluripotent stem cells (iPSCs), we found that DS GABA neurons are smaller and with fewer neuronal processes. The proportion of calretinin over calbindin GABA neurons is reduced, and the neuronal migration capacity is decreased. Such phenotypes were replicated following transplantation of the DS GABAergic progenitors into the mouse medial septum. Gene expression profiling revealed altered cell migratory pathways, and correction of the PAK1 pathway mitigated the cell migration deficit in vitro . These results suggest that impaired migration of DS GABAergic neurons may contribute to the reduced number of interneurons in the cerebral cortex and hippocampus in DS patients.

Journal ArticleDOI
TL;DR: An improved culture system of human induced pluripotent stem cell (iPSC)-derived intestinal organoids is presented involving four methodological advances involving a lentiviral vector to readily establish and optimize conditioned medium for human intestinal organoid culture.
Abstract: Gut epithelial organoids are routinely used to investigate intestinal biology; however, current culture methods are not amenable to genetic manipulation, and it is difficult to generate sufficient numbers for high-throughput studies. Here, we present an improved culture system of human induced pluripotent stem cell (iPSC)-derived intestinal organoids involving four methodological advances. (1) We adopted a lentiviral vector to readily establish and optimize conditioned medium for human intestinal organoid culture. (2) We obtained intestinal organoids from human iPSCs more efficiently by supplementing WNT3A and fibroblast growth factor 2 to induce differentiation into definitive endoderm. (3) Using 2D culture, followed by re-establishment of organoids, we achieved an efficient transduction of exogenous genes in organoids. (4) We investigated suspension organoid culture without scaffolds for easier harvesting and assays. These techniques enable us to develop, maintain, and expand intestinal organoids readily and quickly at low cost, facilitating high-throughput screening of pathogenic factors and candidate treatments for gastrointestinal diseases.