scispace - formally typeset
Journal ArticleDOI

Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets

Reads0
Chats0
TLDR
Graphene nanosheets can penetrate into and extract large amounts of phospholipids from the cell membranes because of the strong dispersion interactions between graphene and lipid molecules as mentioned in this paper.
Abstract
Understanding how nanomaterials interact with cell membranes is related to how they cause cytotoxicity and is therefore critical for designing safer biomedical applications. Recently, graphene (a two-dimensional nanomaterial) was shown to have antibacterial activity on Escherichia coli, but its underlying molecular mechanisms remain unknown. Here we show experimentally and theoretically that pristine graphene and graphene oxide nanosheets can induce the degradation of the inner and outer cell membranes of Escherichia coli, and reduce their viability. Transmission electron microscopy shows three rough stages, and molecular dynamics simulations reveal the atomic details of the process. Graphene nanosheets can penetrate into and extract large amounts of phospholipids from the cell membranes because of the strong dispersion interactions between graphene and lipid molecules. This destructive extraction offers a novel mechanism for the molecular basis of graphene's cytotoxicity and antibacterial activity.

read more

Citations
More filters
Journal ArticleDOI

The antimicrobial activity of nanoparticles: present situation and prospects for the future

TL;DR: The antibacterial mechanisms of NPs against bacteria and the factors that are involved are discussed and the limitations of current research are discussed.
Journal ArticleDOI

Environmental applications of graphene-based nanomaterials.

TL;DR: This critical review assesses the recent developments in the use of graphene-based materials as sorbent or photocatalytic materials for environmental decontamination, as building blocks for next generation water treatment and desalination membranes, and as electrode materials for contaminant monitoring or removal.
Journal ArticleDOI

Antifouling membranes for sustainable water purification: strategies and mechanisms

TL;DR: This review will first introduce the major foulants and the principal mechanisms of membrane fouling, and then highlight the development, current status and future prospects of antifouling membranes, including ant ifouling strategies, preparation techniques and practical applications.
Journal ArticleDOI

Antibacterial Activity of Ti3C2Tx MXene

TL;DR: The antibacterial properties of single- and few-layer Ti3C2Tx MXene flakes in colloidal solution were investigated and showed a higher antibacterial efficiency toward both Gram-negative E. coli and Gram-positive B. subtilis compared with graphene oxide (GO), which has been widely reported as an antibacterial agent.
References
More filters
Journal ArticleDOI

Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons

TL;DR: A simple solution-based oxidative process for producing a nearly 100% yield of nanoribbon structures by lengthwise cutting and unravelling of multiwalled carbon nanotube (MWCNT) side walls is described.
Journal ArticleDOI

PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs

TL;DR: The results showed that graphene is a novel class of material promising for biological applications including future in vivo cancer treatment with various aromatic, low-solubility drugs.
Journal ArticleDOI

Structure of Graphite Oxide Revisited

TL;DR: In this paper, the authors used 13C and 1H NMR spectra of graphite oxide derivatives to confirm the assignment of the 70 ppm line to C−OH groups and allow them to propose a new structural model for graphite oxides.
Posted Content

PEGylated Nano-Graphene Oxide for Delivery of Water Insoluble Cancer Drugs

TL;DR: In this article, the authors functionalized nano-graphene oxide (NGO), a novel graphitic material, with branched polyethylene glycol (PEG) to obtain a biocompatible NGO-PEG conjugate stable in various biological solutions, and used them for attaching hydrophobic aromatic molecules including a camptothecin analog, SN38 non-covalently via pi-pi stacking.
Journal ArticleDOI

Mechanisms of Endocytosis

TL;DR: What is known about mammalian endocytic mechanisms is reviewed, with focus on the cellular proteins that control these events, and the functional relevance of distinctendocytic pathways is discussed.
Related Papers (5)