scispace - formally typeset
Open AccessJournal ArticleDOI

Differences in the localization and morphology of chromosomes in the human nucleus

Reads0
Chats0
TLDR
It is demonstrated that the distribution of genomic sequences between chromosomes has implications for nuclear structure and the findings are discussed in relation to a model of the human nucleus that is functionally compartmentalized.
Abstract
Using fluorescence in situ hybridization we show striking differences in nuclear position, chromosome morphology, and interactions with nuclear substructure for human chromosomes 18 and 19. Human chromosome 19 is shown to adopt a more internal position in the nucleus than chromosome 18 and to be more extensively associated with the nuclear matrix. The more peripheral localization of chromosome 18 is established early in the cell cycle and is maintained thereafter. We show that the preferential localization of chromosomes 18 and 19 in the nucleus is reflected in the orientation of translocation chromosomes in the nucleus. Lastly, we show that the inhibition of transcription can have gross, but reversible, effects on chromosome architecture. Our data demonstrate that the distribution of genomic sequences between chromosomes has implications for nuclear structure and we discuss our findings in relation to a model of the human nucleus that is functionally compartmentalized.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Incomplete sister chromatid separation of long chromosome arms.

TL;DR: A limit in chromosome arm length is suggested for efficient chromosome transmission through mitosis after the analysis of cell division in primary cells from field vole Microtus agrestis, a species with 52 chromosomes including two giant sex chromosomes.
Journal ArticleDOI

How does chromatin package DNA within nucleus and regulate gene expression

TL;DR: This article will try to shed light on how does chromatin package DNA within nucleus and regulate gene expression.
Journal ArticleDOI

A new classification of interphase nuclei based on spatial organizations of chromosome 8 and 21 for t(8;21) (q22;q22) acute myeloid leukemia by three-dimensional fluorescence in situ hybridization

TL;DR: The data demonstrate that the classification of nuclei based on spatial organization of chromosomes by 3D-FISH is reasonable and essential for evaluating acute myeloid leukemia prognosis.
Journal ArticleDOI

Distinct nuclear orientation patterns for mouse chromosome 11 in normal B lymphocytes

TL;DR: There are probabilistic, non-random orientation patterns for mouse chromosome 11 in the mouse B lymphocytes investigated, which indicate that there are different preferential patterns of chromosome 11 orientation, which are not significantly different between both mouse cell types.
Journal ArticleDOI

Dynamic Chromosome Organization and Protein Localization Coordinate the Regulatory Circuitry that Drives the Bacterial Cell Cycle

TL;DR: Comparison to other organisms reveals conservation of cell cycle regulatory logic, even if regulatory proteins, themselves, are not conserved.
References
More filters
Journal ArticleDOI

Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold

TL;DR: Data are presented for sequence-specific chromatin-loop organization in histone-depleted nuclei from Drosophila melanogaster Kc cells and a family of attachment sites related by hybridization to those of the hsp70 genes was discovered.
Journal ArticleDOI

Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells.

TL;DR: It is proposed that the coordinated replication of related groups of replicons, that form stable replicon clusters, contributes to the efficient activation and propagation of S phase in mammalian cells.
Journal ArticleDOI

Association of Transcriptionally Silent Genes with Ikaros Complexes at Centromeric Heterochromatin

TL;DR: It is shown that transcriptionally inactive but not transcriptionally active genes associate with Ikaros-heterochromatin foci, which support a model of organization of the nucleus in which repressed genes are selectively recruited into centromeric domains.
Journal ArticleDOI

The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression

TL;DR: In this paper, immunolabeled human and mouse metaphase chromosomes with antibodies specific for the acetylated isoforms of histone H4 were labeled in regions corresponding to conventional R bands (regions enriched in coding DNA), except for a single chromosome in female cells.
Related Papers (5)