scispace - formally typeset
Open AccessJournal ArticleDOI

Differences in the localization and morphology of chromosomes in the human nucleus

Reads0
Chats0
TLDR
It is demonstrated that the distribution of genomic sequences between chromosomes has implications for nuclear structure and the findings are discussed in relation to a model of the human nucleus that is functionally compartmentalized.
Abstract
Using fluorescence in situ hybridization we show striking differences in nuclear position, chromosome morphology, and interactions with nuclear substructure for human chromosomes 18 and 19. Human chromosome 19 is shown to adopt a more internal position in the nucleus than chromosome 18 and to be more extensively associated with the nuclear matrix. The more peripheral localization of chromosome 18 is established early in the cell cycle and is maintained thereafter. We show that the preferential localization of chromosomes 18 and 19 in the nucleus is reflected in the orientation of translocation chromosomes in the nucleus. Lastly, we show that the inhibition of transcription can have gross, but reversible, effects on chromosome architecture. Our data demonstrate that the distribution of genomic sequences between chromosomes has implications for nuclear structure and we discuss our findings in relation to a model of the human nucleus that is functionally compartmentalized.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Nuclear structure in cancer cells.

TL;DR: Advances in understanding nuclear structure have revealed insights into the process of malignant transformation and provide a basis for the development of new diagnostic tools and therapeutics.
Journal ArticleDOI

The nuclear lamina comes of age

TL;DR: These complexes provide new insights into cell architecture, as a foundation for the understanding of the molecular mechanisms that underlie the human laminopathies — clinical disorders that range from Emery–Dreifuss muscular dystrophy to the accelerated ageing seen in Hutchinson–Gilford progeria syndrome.
Journal ArticleDOI

Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes

TL;DR: Modeling of 3D CT arrangements suggests that cell-type-specific differences in radial CT arrangements are not solely due to geometrical constraints that result from nuclear shape differences, and gene-density-correlated arrangements of higher-order chromatin shared by all human cell types studied so far are found.
Journal ArticleDOI

Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions

TL;DR: This work has shown that the dynamic nature of the positioning of genetic material in the nuclear space and the higher-order architecture of the nucleus are integrated is essential to the overall understanding of gene regulation.
Journal ArticleDOI

Orchestrated response: a symphony of transcription factors for gene control.

TL;DR: The question of how gene expression is regulated in complex eukaryotic genomes has re-focused on the molecular machines that have evolved to navigate through chromatin and mediate transcriptional control.
References
More filters
Journal ArticleDOI

Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold

TL;DR: Data are presented for sequence-specific chromatin-loop organization in histone-depleted nuclei from Drosophila melanogaster Kc cells and a family of attachment sites related by hybridization to those of the hsp70 genes was discovered.
Journal ArticleDOI

Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells.

TL;DR: It is proposed that the coordinated replication of related groups of replicons, that form stable replicon clusters, contributes to the efficient activation and propagation of S phase in mammalian cells.
Journal ArticleDOI

Association of Transcriptionally Silent Genes with Ikaros Complexes at Centromeric Heterochromatin

TL;DR: It is shown that transcriptionally inactive but not transcriptionally active genes associate with Ikaros-heterochromatin foci, which support a model of organization of the nucleus in which repressed genes are selectively recruited into centromeric domains.
Journal ArticleDOI

The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression

TL;DR: In this paper, immunolabeled human and mouse metaphase chromosomes with antibodies specific for the acetylated isoforms of histone H4 were labeled in regions corresponding to conventional R bands (regions enriched in coding DNA), except for a single chromosome in female cells.
Related Papers (5)