scispace - formally typeset
Open AccessJournal ArticleDOI

Gravitational-wave signal of a core-collapse supernova explosion of a 15 M ☉ star

TLDR
In this paper, a three-dimensional simulation of a core-collapse supernova explosion of a $15\text{ }{M}_{\ensuremath{\bigodot}}$ star was performed with neutrino hydrodynamics code chimera.
Abstract
We report on the gravitational-wave signal computed in the context of a three-dimensional simulation of a core-collapse supernova explosion of a $15\text{ }{M}_{\ensuremath{\bigodot}}$ star. The simulation was performed with our neutrino hydrodynamics code chimera. We detail the gravitational wave strains as a function of time, for both polarizations, and discuss their physical origins. We also present the corresponding spectral signatures. Gravitational wave emission in our model has two key features: low-frequency emission (less than 200 Hz) emanates from the gain layer as a result of neutrino-driven convection and the standing accretion shock instability (SASI), and high-frequency emission (greater than 600 Hz) emanates from the proto--neutron star due to Ledoux convection within it. The high-frequency emission dominates the gravitational wave emission in our model and emanates largely from the convective layer itself, not from the convectively stable layer above it, due to convective overshoot. Moreover, the low-frequency emission emanates from the gain layer itself, not from the proto--neutron star, due to accretion onto it. We provide evidence of the SASI in our model and demonstrate that the peak of our low-frequency gravitational wave emission spectrum corresponds to it. Given its origin in the gain layer, we classify the SASI emission in our model as p-mode emission and assign a purely acoustic origin, not a vortical--acoustic origin, to it. We compare the results of our three-dimensional model analysis with those obtained from the model's two-dimensional counterpart and find a significant reduction in the strain amplitudes in the former case, as well as significant reductions in all related quantities. Our dominant proto--neutron star gravitational wave emission is not well characterized by emission from surface g modes, complicating the relationship between peak frequencies observed and the mass and radius of the proto--neutron star expressed by analytic estimates under the assumption of surface g-mode emission. We present our frequency normalized characteristic strain along with the sensitivity curves of current- and next-generation gravitational wave detectors. This simple analysis indicates that the spectrum of gravitational wave emission between approximately 20 Hz and approximately 1 kHz, stemming from neutrino-driven convection, the SASI, accretion onto the proto--neutron star, and proto--neutron star convection, will be accessible for a Galactic event.

read more

Citations
More filters
Journal Article

The Observation of Gravitational Waves from a Binary Black Hole Merger

TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.

Monthly Notices of the Royal Astronomical Society

TL;DR: The Monthly Notices as mentioned in this paper is one of the three largest general primary astronomical research publications in the world, published by the Royal Astronomical Society (RAE), and it is the most widely cited journal in astronomy.
Journal ArticleDOI

Multi-messenger Observations of a Binary Neutron Star

TL;DR: AGILE as discussed by the authors is an ASI space mission developed with programmatic support by INAF and INFN, which includes data gathered with the 1 meter Swope and 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.
Journal ArticleDOI

Properties and Astrophysical Implications of the 150 M Binary Black Hole Merger GW190521

Richard J. Abbott, +1332 more
TL;DR: The GW190521 signal is consistent with a binary black hole (BBH) merger source at redshift 0.13-0.30 Gpc-3 yr-1.8 as discussed by the authors.
Journal ArticleDOI

Exploring Fundamentally Three-dimensional Phenomena in High-fidelity Simulations of Core-collapse Supernovae

TL;DR: The physical mechanism that drives core-collapse supernovae (CCSNe) remains uncertain this article, while there is an emerging consensus on the qualitative outcome of detailed CCSN mechanism simulations.
References
More filters
Book ChapterDOI

I and J

Journal ArticleDOI

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Journal Article

The Observation of Gravitational Waves from a Binary Black Hole Merger

TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Journal ArticleDOI

GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence

B. P. Abbott, +973 more
TL;DR: This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.
Related Papers (5)