scispace - formally typeset
Open AccessJournal ArticleDOI

Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review

Reads0
Chats0
TLDR
The toxic range of all the three metal-containing NPs to target- and non-target organisms overlaps, indicating that the leaching of biocidal NPs from consumer products should be addressed.
Abstract
Nanoparticles (NPs) of copper oxide (CuO), zinc oxide (ZnO) and especially nanosilver are intentionally used to fight the undesirable growth of bacteria, fungi and algae. Release of these NPs from consumer and household products into waste streams and further into the environment may, however, pose threat to the ‘non-target’ organisms, such as natural microbes and aquatic organisms. This review summarizes the recent research on (eco)toxicity of silver (Ag), CuO and ZnO NPs. Organism-wise it focuses on key test species used for the analysis of ecotoxicological hazard. For comparison, the toxic effects of studied NPs toward mammalian cells in vitro were addressed. Altogether 317 L(E)C50 or minimal inhibitory concentrations (MIC) values were obtained for algae, crustaceans, fish, bacteria, yeast, nematodes, protozoa and mammalian cell lines. As a rule, crustaceans, algae and fish proved most sensitive to the studied NPs. The median L(E)C50 values of Ag NPs, CuO NPs and ZnO NPs (mg/L) were 0.01, 2.1 and 2.3 for crustaceans; 0.36, 2.8 and 0.08 for algae; and 1.36, 100 and 3.0 for fish, respectively. Surprisingly, the NPs were less toxic to bacteria than to aquatic organisms: the median MIC values for bacteria were 7.1, 200 and 500 mg/L for Ag, CuO and ZnO NPs, respectively. In comparison, the respective median L(E)C50 values for mammalian cells were 11.3, 25 and 43 mg/L. Thus, the toxic range of all the three metal-containing NPs to target- and non-target organisms overlaps, indicating that the leaching of biocidal NPs from consumer products should be addressed.

read more

Citations
More filters
Journal ArticleDOI

Self-redox reaction driven in situ formation of Cu2O/Ti3C2Tx nanosheets boost the photocatalytic eradication of multi-drug resistant bacteria from infected wound

TL;DR: In this article , a water-dispersible single layer Ti3C2Tx-based MXene was etched with tightly stacked MAX phase precursor using a minimally intensive layer delamination method, and the adsorbed Cu(II) ions underwent self-redox reactions with the surface oxygenated moieties of MXene, leading to in situ formation of Cu2O species to yield Cu 2O/Ti3C 2Tx nanosheets (heterostructures).
Journal ArticleDOI

PC12 cell integrated biosensing neuron devices for evaluating neuronal exocytosis function upon silver nanoparticles exposure

TL;DR: Results presented here confirm the dose-dependent toxicity of Ag-NPs and the immediate alteration of their exocytosis function when exposed to NPs.
Journal ArticleDOI

Catalyst-induced gas-sensing selectivity in ZnO nanoribbons: Ab-initio investigation at room temperature

TL;DR: In this paper, a combination of density functional theory (DFT) and non-equilibrium Green's function (NEGF) formalism is used to probe both the adsorption and the transport properties, essential in the study of the gas-sensing response.
Journal ArticleDOI

The potential hazards and ecotoxicity of CuO nanoparticles: an overview

TL;DR: In this paper, a review summarizes the underlying toxicity mechanisms of CuO nanoparticles on the basis of various environmentally relevant test species and cells, and summarizes the toxicity effects related to CuO NPs.
Journal ArticleDOI

Nanomaterials and nanomaterials-based drug delivery to promote cutaneous wound healing.

TL;DR: In this article , a review of wound categories, wound healing process and critical influencing factors is presented, and applications of nanomaterials with intrinsic therapeutic effect and nanommaterials-based drug delivery systems to promote wound healing are addressed in detail.
References
More filters
Journal ArticleDOI

Toxic Potential of Materials at the Nanolevel

TL;DR: The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.
Journal ArticleDOI

The bactericidal effect of silver nanoparticles

TL;DR: The results indicate that the bactericidal properties of the nanoparticles are size dependent, since the only nanoparticles that present a direct interaction with the bacteria preferentially have a diameter of approximately 1-10 nm.
Journal ArticleDOI

A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment

TL;DR: A review of the antibacterial effects of silver nanomaterials, including proposed antibacterial mechanisms and possible toxicity to higher organisms, is presented in this paper, where the authors suggest that further research is warranted given the already widespread and rapidly growing use of silver nanoparticles.
Journal ArticleDOI

Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity

TL;DR: The reduction of [Ag(NH(3))(2)](+) by maltose produced silver particles with a narrow size distribution with an average size of 25 nm, which showed high antimicrobial and bactericidal activity against Gram-positive and Gram-negative bacteria, including highly multiresistant strains such as methicillin-resistant Staphylococcus aureus.
Journal ArticleDOI

Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal

TL;DR: It can be concluded that the therapeutic window for silver is narrower than often assumed, however, the risks for humans and the environment are probably limited.
Related Papers (5)