scispace - formally typeset
Open AccessJournal ArticleDOI

Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review

TLDR
The toxic range of all the three metal-containing NPs to target- and non-target organisms overlaps, indicating that the leaching of biocidal NPs from consumer products should be addressed.
Abstract
Nanoparticles (NPs) of copper oxide (CuO), zinc oxide (ZnO) and especially nanosilver are intentionally used to fight the undesirable growth of bacteria, fungi and algae. Release of these NPs from consumer and household products into waste streams and further into the environment may, however, pose threat to the ‘non-target’ organisms, such as natural microbes and aquatic organisms. This review summarizes the recent research on (eco)toxicity of silver (Ag), CuO and ZnO NPs. Organism-wise it focuses on key test species used for the analysis of ecotoxicological hazard. For comparison, the toxic effects of studied NPs toward mammalian cells in vitro were addressed. Altogether 317 L(E)C50 or minimal inhibitory concentrations (MIC) values were obtained for algae, crustaceans, fish, bacteria, yeast, nematodes, protozoa and mammalian cell lines. As a rule, crustaceans, algae and fish proved most sensitive to the studied NPs. The median L(E)C50 values of Ag NPs, CuO NPs and ZnO NPs (mg/L) were 0.01, 2.1 and 2.3 for crustaceans; 0.36, 2.8 and 0.08 for algae; and 1.36, 100 and 3.0 for fish, respectively. Surprisingly, the NPs were less toxic to bacteria than to aquatic organisms: the median MIC values for bacteria were 7.1, 200 and 500 mg/L for Ag, CuO and ZnO NPs, respectively. In comparison, the respective median L(E)C50 values for mammalian cells were 11.3, 25 and 43 mg/L. Thus, the toxic range of all the three metal-containing NPs to target- and non-target organisms overlaps, indicating that the leaching of biocidal NPs from consumer products should be addressed.

read more

Citations
More filters
Journal ArticleDOI

Molybdenum sulfide Co-catalytic Fenton reaction for rapid and efficient inactivation of Escherichia coli.

TL;DR: It is demonstrated an increased amount of ·OH generated from the decomposition of H2O2 in the presence of MoS2, which is responsible for the rapid and efficient inactivation of E. coli and S. aureus.
Journal ArticleDOI

Evaluation of Exposure Concentrations Used in Assessing Manufactured Nanomaterial Environmental Hazards: Are They Relevant?

TL;DR: It may be premature for MNM risk research to sanction information on the basis of concentration "environmental relevance", as uncertainties influence the environmental relevance of current hazard assessments and exposure models.
Journal ArticleDOI

Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa

TL;DR: CuO and ZnO had the highest toxicity (EC50 values below 1 mg l−1) among all organism groups except for the protozoa, and the high toxicity was mostly due to the shedding of toxic concentrations of Zn and Cu ions.
Journal ArticleDOI

Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum , a native white-rot fungus from Chilean forests

TL;DR: The white-rot fungus Stereum hirsutum was studied to evaluate its applicability for use in the biosynthesis of copper/copper oxide nanoparticles under different pHconditions and in the presence of three different copper salts (CuCl2, CuSO4, and Cu(NO3)2) as discussed by the authors.
Journal ArticleDOI

Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis?

TL;DR: The green synthesis has been proposed as an alternative to reduce the use of hazardous compounds and harsh reaction conditions in the production of metallic nanoparticles (MNPs) by using organic compounds, microbes, plants and plant-derived materials as reducing agents.
References
More filters
Journal ArticleDOI

Toxic Potential of Materials at the Nanolevel

TL;DR: The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.
Journal ArticleDOI

The bactericidal effect of silver nanoparticles

TL;DR: The results indicate that the bactericidal properties of the nanoparticles are size dependent, since the only nanoparticles that present a direct interaction with the bacteria preferentially have a diameter of approximately 1-10 nm.
Journal ArticleDOI

A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment

TL;DR: A review of the antibacterial effects of silver nanomaterials, including proposed antibacterial mechanisms and possible toxicity to higher organisms, is presented in this paper, where the authors suggest that further research is warranted given the already widespread and rapidly growing use of silver nanoparticles.
Journal ArticleDOI

Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity

TL;DR: The reduction of [Ag(NH(3))(2)](+) by maltose produced silver particles with a narrow size distribution with an average size of 25 nm, which showed high antimicrobial and bactericidal activity against Gram-positive and Gram-negative bacteria, including highly multiresistant strains such as methicillin-resistant Staphylococcus aureus.
Journal ArticleDOI

Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal

TL;DR: It can be concluded that the therapeutic window for silver is narrower than often assumed, however, the risks for humans and the environment are probably limited.
Related Papers (5)