scispace - formally typeset
Search or ask a question

Showing papers on "Cell growth published in 2019"


Journal ArticleDOI
TL;DR: Analysis of scATAC-seq profiles from serial tumor biopsies before and after programmed cell death protein 1 blockade identifies chromatin regulators of therapy-responsive T cell subsets and reveals a shared regulatory program that governs intratumoral T cell exhaustion and CD4+ T follicular helper cell development.
Abstract: Understanding complex tissues requires single-cell deconstruction of gene regulation with precision and scale. Here, we assess the performance of a massively parallel droplet-based method for mapping transposase-accessible chromatin in single cells using sequencing (scATAC-seq). We apply scATAC-seq to obtain chromatin profiles of more than 200,000 single cells in human blood and basal cell carcinoma. In blood, application of scATAC-seq enables marker-free identification of cell type-specific cis- and trans-regulatory elements, mapping of disease-associated enhancer activity and reconstruction of trajectories of cellular differentiation. In basal cell carcinoma, application of scATAC-seq reveals regulatory networks in malignant, stromal and immune cells in the tumor microenvironment. Analysis of scATAC-seq profiles from serial tumor biopsies before and after programmed cell death protein 1 blockade identifies chromatin regulators of therapy-responsive T cell subsets and reveals a shared regulatory program that governs intratumoral CD8+ T cell exhaustion and CD4+ T follicular helper cell development. We anticipate that scATAC-seq will enable the unbiased discovery of gene regulatory factors across diverse biological systems.

510 citations


Journal ArticleDOI
TL;DR: A better understanding of how cells utilize nutrients for biosynthetic pathways and how they overcome the metabolic challenges associated with high proliferation rates can lead to better control of cell proliferation and improved cancer treatments.
Abstract: Cellular metabolism is at the foundation of all biological activities. The catabolic processes that support cellular bioenergetics and survival have been well studied. By contrast, how cells alter their metabolism to support anabolic biomass accumulation is less well understood. During the commitment to cell proliferation, extensive metabolic rewiring must occur in order for cells to acquire sufficient nutrients such as glucose, amino acids, lipids and nucleotides, which are necessary to support cell growth and to deal with the redox challenges that arise from the increased metabolic activity associated with anabolic processes. Defining the mechanisms of this metabolic adaptation for cell growth and proliferation is now a major focus of research. Understanding the principles that guide anabolic metabolism may ultimately enhance ways to treat diseases that involve deregulated cell growth and proliferation, such as cancer.

482 citations


Journal ArticleDOI
TL;DR: This is the first comprehensive study that METTL3 affected the tumor formation by the regulation the m6A modification in non-coding RNAs, which might provide fresh insights into bladder cancer therapy.
Abstract: METTL3 is known to be involved in all stages in the life cycle of RNA. It affects the tumor formation by the regulation the m6A modification in the mRNAs of critical oncogenes or tumor suppressors. In bladder cancer, METTL3 could promote the bladder cancer progression via AFF4/NF-κB/MYC signaling network by an m6A dependent manner. Recently, METTL3 was also found to affect the m6A modification in non-coding RNAs including miRNAs, lincRNAs and circRNAs. However, whether this mechanism is related to the proliferation of tumors induced by METTL3 is not reported yet. Quantitative real-time PCR, western blot and immunohistochemistry were used to detect the expression of METTL3 in bladder cancer. The survival analysis was adopted to explore the association between METTL3 expression and the prognosis of bladder cancer. Bladder cancer cells were stably transfected with lentivirus and cell proliferation and cell cycle, as well as tumorigenesis in nude mice were performed to assess the effect of METTL3 in bladder cancer. RNA immunoprecipitation (RIP), co-immunoprecipitations and RNA m6A dot blot assays were conducted to confirm that METTL3 interacted with the microprocessor protein DGCR8 and modulated the pri-miR221/222 process in an m6A-dependent manner. Luciferase reporter assay was employed to identify the direct binding sites of miR221/222 with PTEN. Colony formation assay and CCK8 assays were conducted to confirm the function of miR-221/222 in METTL3-induced cell growth in bladder cancer. We confirmed the oncogenic role of METTL3 in bladder cancer by accelerating the maturation of pri-miR221/222, resulting in the reduction of PTEN, which ultimately leads to the proliferation of bladder cancer. Moreover, we found that METTL3 was significantly increased in bladder cancer and correlated with poor prognosis of bladder cancer patients. Our findings suggested that METTL3 may have an oncogenic role in bladder cancer through interacting with the microprocessor protein DGCR8 and positively modulating the pri-miR221/222 process in an m6A-dependent manner. To our knowledge, this is the first comprehensive study that METTL3 affected the tumor formation by the regulation the m6A modification in non-coding RNAs, which might provide fresh insights into bladder cancer therapy.

390 citations


Journal ArticleDOI
14 Feb 2019-Blood
TL;DR: It is shown that GM-CSF neutralization with lenzilumab does not inhibit CART19 cell function in vitro or in vivo, and a novel approach to abrogate NI and CRS through GM- CSF neutralized, which may potentially enhance CAR-T cell function.

362 citations


Journal ArticleDOI
21 Feb 2019-Cell
TL;DR: It is proposed that the range of DNA:cytoplasm ratio that supports optimal cell function is limited and that ratios outside these bounds contribute to aging.

308 citations


Journal ArticleDOI
TL;DR: A novel oncogenic lncRNA MCM3AP-AS1 is revealed, which is overexpressed in HCC and positively correlated with large tumor size, high tumor grade, advanced tumor stage and poor prognosis of HCC patients.
Abstract: Hepatocellular carcinoma (HCC) is the most common malignant liver tumor with poor clinical outcomes. Increasing amount of long non-coding RNAs (lncRNAs) have been revealed to be implicated in the carcinogenesis and progression of HCC. However, the expressions, clinical significances, and roles of most lncRNAs in HCC are still unknown. The expression of lncRNA MCM3AP antisense RNA 1 (MCM3AP-AS1) in HCC tissues and cell lines was detected by qRT-PCR and fluorescence in situ hybridization. Immunoblotting, CCK-8, EdU, colony formation and flow cytometry were performed to investigate the role of MCM3AP-AS1 in HCC cell proliferation, cell cycle and apoptosis in vitro. A subcutaneous tumor mouse model was constructed to analyze in vivo growth of HCC cells after MCM3AP-AS1 knockdown. The interactions among MCM3AP-AS1, miR-194-5p and FOXA1 were measured by RNA pull-down, RNA immunoprecipitation and luciferase reporter assay. We revealed a novel oncogenic lncRNA MCM3AP-AS1, which is overexpressed in HCC and positively correlated with large tumor size, high tumor grade, advanced tumor stage and poor prognosis of HCC patients. MCM3AP-AS1 knockdown suppressed HCC cell proliferation, colony formation and cell cycle progression, and induced apoptosis in vitro, and depletion of MCM3AP-AS1 inhibited tumor growth of HCC in vivo. Mechanistically, MCM3AP-AS1 directly bound to miR-194-5p and acted as competing endogenous RNA (ceRNA), and subsequently facilitated miR-194-5p’s target gene forkhead box A1 (FOXA1) expression in HCC cells. Interestingly, FOXA1 restoration rescued MCM3AP-AS1 knockdown induced proliferation inhibition, G1 arrest and apoptosis of HCC cells. Our results recognized MCM3AP-AS1 as a novel oncogenic lncRNA, which indicated poor clinical outcomes in patients with HCC. MCM3AP-AS1 exerted an oncogenic role in HCC via targeting miR-194-5p and subsequently promoted FOXA1 expression. Our findings suggested that MCM3AP-AS1 could be a potential prognostic biomarker and therapeutic target for HCC.

297 citations


Journal ArticleDOI
TL;DR: The results of this study reveal a potential ceRNA regulatory pathway in which PVT1 modulates HK2 expression by competitively binding to endogenous miR-143 in GBC cells, which may provide new insights into novel molecular therapeutic targets for GBC.
Abstract: The long non-coding RNA PVT1 (lncRNA PVT1) has been reported to act as an oncogenic regulator of several cancers. However, its expression and function in gallbladder cancer (GBC) remain largely unknown. In situ hybridization (ISH) and quantitative real-time PCR (qPCR) were performed to detect the expression of PVT1 and miR-143 in GBC tissues and cell lines. Immunohistochemistry (IHC) assays were performed to assess the expression of the hexokinase 2 (HK2) protein. The relationships among PVT1, miR-143 and HK2 were evaluated using dual-luciferase reporter, RNA immunoprecipitation (RIP) and biotin pull-down assays. The biological functions of PVT1, miR-143 and HK2 in GBC cells were explored with cell counting kit 8 (CCK-8), 5-ethynyl-20-deoxyuridine (EdU), colony formation, transwell, wound healing and glucose metabolism assays in vitro. For in vivo experiments, a xenograft model was used to investigate the effects of PVT1 and HK2 on GBC. PVT1 was upregulated in GBC tissues and cells and was positively associated with malignancies and worse overall survival. PVT1 knockdown inhibited cell proliferation, migration, and invasion in vitro and restrained tumor growth in vivo. Further studies demonstrated that PVT1 positively regulated HK2 expression via its competing endogenous RNA (ceRNA) activity on miR-143. Additionally, HK2 expression and function were positively correlated with PVT1. Furthermore, we observed that the PVT1/miR-143/HK2 axis promoted cell proliferation and metastasis by regulating aerobic glucose metabolism in GBC cells. The results of our study reveal a potential ceRNA regulatory pathway in which PVT1 modulates HK2 expression by competitively binding to endogenous miR-143 in GBC cells, which may provide new insights into novel molecular therapeutic targets for GBC.

264 citations


Journal ArticleDOI
TL;DR: The discovery of highly potent PROTAC degraders of androgen receptor (AR), as exemplified by compound 34 (ARD-69), capable of reducing the AR protein level by >95% in these prostate cancer cell lines and effectively suppressing AR-regulated gene expression may ultimately lead to a new therapy for AR+, castration-resistant prostate cancer.
Abstract: We report herein the discovery of highly potent PROTAC degraders of androgen receptor (AR), as exemplified by compound 34 (ARD-69). ARD-69 induces degradation of AR protein in AR-positive prostate cancer cell lines in a dose- and time-dependent manner. ARD-69 achieves DC50 values of 0.86, 0.76, and 10.4 nM in LNCaP, VCaP, and 22Rv1 AR+ prostate cancer cell lines, respectively. ARD-69 is capable of reducing the AR protein level by >95% in these prostate cancer cell lines and effectively suppressing AR-regulated gene expression. ARD-69 potently inhibits cell growth in these AR-positive prostate cancer cell lines and is >100 times more potent than AR antagonists. A single dose of ARD-69 effectively reduces the level of AR protein in xenograft tumor tissue in mice. Further optimization of ARD-69 may ultimately lead to a new therapy for AR+, castration-resistant prostate cancer.

241 citations


Journal ArticleDOI
TL;DR: Findings identify the SRF/IGF2BP1, miRNome- and m6A-dependent control of gene expression as a conserved oncogenic driver network in cancer.
Abstract: The oncofetal mRNA-binding protein IGF2BP1 and the transcriptional regulator SRF modulate gene expression in cancer. In cancer cells, we demonstrate that IGF2BP1 promotes the expression of SRF in a conserved and N6-methyladenosine (m6A)-dependent manner by impairing the miRNA-directed decay of the SRF mRNA. This results in enhanced SRF-dependent transcriptional activity and promotes tumor cell growth and invasion. At the post-transcriptional level, IGF2BP1 sustains the expression of various SRF-target genes. The majority of these SRF/IGF2BP1-enhanced genes, including PDLIM7 and FOXK1, show conserved upregulation with SRF and IGF2BP1 synthesis in cancer. PDLIM7 and FOXK1 promote tumor cell growth and were reported to enhance cell invasion. Consistently, 35 SRF/IGF2BP1-dependent genes showing conserved association with SRF and IGF2BP1 expression indicate a poor overall survival probability in ovarian, liver and lung cancer. In conclusion, these findings identify the SRF/IGF2BP1-, miRNome- and m6A-dependent control of gene expression as a conserved oncogenic driver network in cancer.

240 citations


Posted ContentDOI
18 Apr 2019-bioRxiv
TL;DR: It is anticipated that droplet-based single-cell chromatin accessibility will provide a broadly applicable means of identifying regulatory factors and elements that underlie cell type and function.
Abstract: Understanding complex tissues requires single-cell deconstruction of gene regulation with precision and scale. Here we present a massively parallel droplet-based platform for mapping transposase-accessible chromatin in tens of thousands of single cells per sample (scATAC-seq). We obtain and analyze chromatin profiles of over 200,000 single cells in two primary human systems. In blood, scATAC-seq allows marker-free identification of cell type-specific cis- and trans-regulatory elements, mapping of disease-associated enhancer activity, and reconstruction of trajectories of differentiation from progenitors to diverse and rare immune cell types. In basal cell carcinoma, scATAC-seq reveals regulatory landscapes of malignant, stromal, and immune cell types in the tumor microenvironment. Moreover, scATAC-seq of serial tumor biopsies before and after PD-1 blockade allows identification of chromatin regulators and differentiation trajectories of therapy-responsive intratumoral T cell subsets, revealing a shared regulatory program driving CD8+ T cell exhaustion and CD4+ T follicular helper cell development. We anticipate that droplet-based single-cell chromatin accessibility will provide a broadly applicable means of identifying regulatory factors and elements that underlie cell type and function.

228 citations


Journal ArticleDOI
TL;DR: It is demonstrated that P. anaerobius can selectively bind to tumours and CRC cell lines and trigger downstream responses, resulting in chronic inflammation and tumour progression in a mouse model of CRC.
Abstract: Emerging evidence implicates a role of the gut microbiota in colorectal cancer (CRC). Peptostreptococcus anaerobius (P. anaerobius) is an anaerobic bacterium selectively enriched in the faecal and mucosal microbiota from patients with CRC, but its causative role and molecular mechanism in promoting tumorigenesis remain unestablished. We demonstrate that P. anaerobius adheres to the CRC mucosa and accelerates CRC development in ApcMin/+ mice. In vitro assays and transmission electron microscopy revealed that P. anaerobius selectively adheres to CRC cell lines (HT-29 and Caco-2) compared to normal colonic epithelial cells (NCM460). We identified a P. anaerobius surface protein, putative cell wall binding repeat 2 (PCWBR2), which directly interacts with colonic cell lines via α2/β1 integrin, a receptor frequently overexpressed in human CRC tumours and cell lines. Interaction between PCWBR2 and integrin α2/β1 induces the activation of the PI3K–Akt pathway in CRC cells via phospho-focal adhesion kinase, leading to increased cell proliferation and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. NF-κB in turn triggers a pro-inflammatory response as indicated by increased levels of cytokines, such as interleukin-10 and interferon-γ in the tumours of P. anaerobius-treated ApcMin/+ mice. Analyses of tumour-infiltrating immune cell populations in P. anaerobius-treated ApcMin/+ mice revealed significant expansion of myeloid-derived suppressor cells, tumour-associated macrophages and granulocytic tumour-associated neutrophils, which are associated with chronic inflammation and tumour progression. Blockade of integrin α2/β1 by RGDS peptide, small interfering RNA or antibodies all impair P. anaerobius attachment and abolish P. anaerobius-mediated oncogenic response in vitro and in vivo. Collectively, we show that P. anaerobius drives CRC via a PCWBR2-integrin α2/β1-PI3K–Akt–NF-κB signalling axis and identify the PCWBR2-integrin α2/β1 axis as a potential therapeutic target for CRC. Peptostreptococcus anaerobius is enriched in the gut microbiota of patients with colorectal cancer (CRC). Here, the authors show that it can selectively bind to tumours and CRC cell lines and trigger downstream responses, resulting in chronic inflammation and tumour progression in a mouse model of CRC.

Journal ArticleDOI
TL;DR: It is reported that the down-regulation of YTHDF2 was specifically induced by hypoxia in hepatocellular carcinoma (HCC) cells, and that overexpression of Y THDF2 suppressed cell proliferation, tumor growth and activation of MEK and ERK in HCC cells.

Journal ArticleDOI
13 Feb 2019-Nature
TL;DR: It is found that loss of squalene monooxygenase expression alters the lipid metabolism of cancer cells, which confers protection from ferroptotic cell death and thus promotes tumour growth.
Abstract: Cholesterol is essential for cells to grow and proliferate. Normal mammalian cells meet their need for cholesterol through its uptake or de novo synthesis1, but the extent to which cancer cells rely on each of these pathways remains poorly understood. Here, using a competitive proliferation assay on a pooled collection of DNA-barcoded cell lines, we identify a subset of cancer cells that is auxotrophic for cholesterol and thus highly dependent on its uptake. Through metabolic gene expression analysis, we pinpoint the loss of squalene monooxygenase expression as a cause of cholesterol auxotrophy, particularly in ALK+ anaplastic large cell lymphoma (ALCL) cell lines and primary tumours. Squalene monooxygenase catalyses the oxidation of squalene to 2,3-oxidosqualene in the cholesterol synthesis pathway and its loss results in accumulation of the upstream metabolite squalene, which is normally undetectable. In ALK+ ALCLs, squalene alters the cellular lipid profile and protects cancer cells from ferroptotic cell death, providing a growth advantage under conditions of oxidative stress and in tumour xenografts. Finally, a CRISPR-based genetic screen identified cholesterol uptake by the low-density lipoprotein receptor as essential for the growth of ALCL cells in culture and as patient-derived xenografts. This work reveals that the cholesterol auxotrophy of ALCLs is a targetable liability and, more broadly, that systematic approaches can be used to identify nutrient dependencies unique to individual cancer types.

Journal ArticleDOI
TL;DR: The lncGLCC1 is significantly upregulated under glucose starvation in CRC cells, supporting cell survival and proliferation by enhancing glycolysis and correlates with poor prognosis in this cancer.
Abstract: Long non-coding RNAs (lncRNAs) contribute to colorectal cancer (CRC). However, the role of lncRNAs in CRC metabolism, especially glucose metabolism remains largely unknown. In this study, we identify a lncRNA, GLCC1, which is significantly upregulated under glucose starvation in CRC cells, supporting cell survival and proliferation by enhancing glycolysis. Mechanistically, GLCC1 stabilizes c-Myc transcriptional factor from ubiquitination by direct interaction with HSP90 chaperon and further specifies the transcriptional modification pattern on c-Myc target genes, such as LDHA, consequently reprogram glycolytic metabolism for CRC proliferation. Clinically, GLCC1 is associated with tumorigenesis, tumor size and predicts poor prognosis. Thus, GLCC1 is mechanistically, functionally, and clinically oncogenic in colorectal cancer. Targeting GLCC1 and its pathway may be meaningful for treating patients with colorectal cancer. lncRNA and cellular metabolism are frequently dysregulated in cancer. In this study, the authors discover the lncGLCC1 is increased in colorectal cancer cells under glucose starvation conditions and correlates with poor prognosis in this cancer.

Journal ArticleDOI
TL;DR: The Sca-1+gp38+Thy1.2+CD29+CD51+ fraction of spleen stroma has been identified as an equivalent stromal subset resembling the 5G3 cell counterpart, and has been shown to have superior hematopoietic support capacity.
Abstract: Stromal cells in spleen organise tissue into red pulp, white pulp and marginal zone and also interact with hematopoietic cells to regulate immune responses. This study has used phenotypic information of a previously described spleen stromal cell line called 5G3, which supports restricted hematopoiesis in vitro, to identify an equivalent stromal cell subset in vivo and to test its capacity to support hematopoiesis. Using stromal cell fractionation, phenotypic analysis, as well as cell growth and hematopoietic support assays, the Sca-1+gp38+Thy1.2+CD29+CD51+ fraction of spleen stroma has been identified as an equivalent stromal subset resembling the 5G3 cell counterpart. While heterogeneity may still exist within that subset, it has been shown to have superior hematopoietic support capacity compared with the 5G3 cell line, and all other spleen stromal cell fractions tested.

Journal ArticleDOI
TL;DR: It is shown that PSCs undergo a dramatic lipid metabolic shift during differentiation in the context of pancreatic tumorigenesis, including remodeling of the intracellular lipidome and secretion of abundant lipids in the activated, fibroblastic state.
Abstract: Pancreatic ductal adenocarcinoma (PDAC) develops a pronounced stromal response reflecting an aberrant wound-healing process. This stromal reaction features transdifferentiation of tissue-resident pancreatic stellate cells (PSC) into activated cancer-associated fibroblasts, a process induced by PDAC cells but of unclear significance for PDAC progression. Here, we show that PSCs undergo a dramatic lipid metabolic shift during differentiation in the context of pancreatic tumorigenesis, including remodeling of the intracellular lipidome and secretion of abundant lipids in the activated, fibroblastic state. Specifically, stroma-derived lysophosphatidylcholines support PDAC cell synthesis of phosphatidylcholines, key components of cell membranes, and also facilitate production of the potent wound-healing mediator lysophosphatidic acid (LPA) by the extracellular enzyme autotaxin, which is overexpressed in PDAC. The autotaxin-LPA axis promotes PDAC cell proliferation, migration, and AKT activation, and genetic or pharmacologic autotaxin inhibition suppresses PDAC growth in vivo. Our work demonstrates how PDAC cells exploit the local production of wound-healing mediators to stimulate their own growth and migration. SIGNIFICANCE: Our work highlights an unanticipated role for PSCs in producing the oncogenic LPA signaling lipid and demonstrates how PDAC tumor cells co-opt the release of wound-healing mediators by neighboring PSCs to promote their own proliferation and migration.See related commentary by Biffi and Tuveson, p. 578.This article is highlighted in the In This Issue feature, p. 565.

Journal ArticleDOI
TL;DR: Increased miR-21-5p delivery by MSC-EV after hypoxia pre-challenge can promote lung cancer development by reducing apoptosis and promoting macrophage M2 polarization.
Abstract: To investigate the lung cancer-promoting mechanism of mesenchymal stem cell-secreted extracellular vesicles (MSC-EV). EV were isolated from culture media of human bone marrow-derived MSCs that were pre-challenged with or without hypoxia (referred to as H-EV and N-EV, respectively). After treatment with N-EV or H-EV, A549 and H23 cell proliferation, apoptosis, trans-well invasion and epithelial-to-mesenchymal transition (EMT) were examined. Polarization of human primary monocytes-derived macrophages with or without N-EV or H-EV induction were analyzed by flow cytometry and ELISA. PTEN, PDCD4 or RECK gene was overexpressed in A549 cells, while miR-21-5p was knocked down in MSCs, A549 or H23 lung cancer cells or primary monocytes by miR-21-5p inhibitor transfection. Protein level of PTEN, PDCD4, RECK, AKT or STAT3 as well as phosphorylation level of AKT or STAT3 protein were assayed by western blot. Tumorigenicity of A549 and H23 cells with or without MSC-EV co-injection was assayed on immunocompromised mice. The xenograft tumor were examined for cell proliferation, angiogenesis, apoptosis and intra-tumoral M1/M2 macrophage polarization. Comparing to N-EV, H-EV treatment significantly increased A549 and H23 cell proliferation, survival, invasiveness and EMT as well as macrophage M2 polarization. MiR-21-5p knocked down significantly abrogated the cancer-promoting and macrophage M2 polarizing effects of H-EV treatment. H-EV treatment downregulated PTEN, PDCD4 and RECK gene expression largely through miR-21-5p. Overexpressing PTEN, PDCD4 and RECK in A549 cells significantly reduced the miR-21-5p-mediated anti-apoptotic and pro-metastatic effect of H-EV, while overexpressing PTEN in monocytes significantly reduced macrophage M2 polarization after induction with the presence of H-EV. H-EV co-injection significantly increased tumor growth, cancer cell proliferation, intra-tumoral angiogenesis and M2 polarization of macrophages in vivo partially through miR-21-5p. Increased miR-21-5p delivery by MSC-EV after hypoxia pre-challenge can promote lung cancer development by reducing apoptosis and promoting macrophage M2 polarization.

Journal ArticleDOI
16 May 2019-Cells
TL;DR: The significant improvements in intraoperative stem cell approaches, from in vivo models to clinical investigations, are reviewed and the potential regenerative instruments and functions of various cell populaces in the hair regrowth process are discussed.
Abstract: The use of stem cells has been reported to improve hair regrowth in several therapeutic strategies, including reversing the pathological mechanisms, that contribute to hair loss, regeneration of hair follicles, or creating hair using the tissue-engineering approach. Although various promising stem cell approaches are progressing via pre-clinical models to clinical trials, intraoperative stem cell treatments with a one-step procedure offer a quicker result by incorporating an autologous cell source without manipulation, which may be injected by surgeons through a well-established clinical practice. Many authors have concentrated on adipose-derived stromal vascular cells due to their ability to separate into numerous cell genealogies, platelet-rich plasma for its ability to enhance cell multiplication and neo-angiogenesis, as well as human follicle mesenchymal stem cells. In this paper, the significant improvements in intraoperative stem cell approaches, from in vivo models to clinical investigations, are reviewed. The potential regenerative instruments and functions of various cell populaces in the hair regrowth process are discussed. The addition of Wnt signaling in dermal papilla cells is considered a key factor in stimulating hair growth. Mesenchymal stem cell-derived signaling and growth factors obtained by platelets influence hair growth through cellular proliferation to prolong the anagen phase (FGF-7), induce cell growth (ERK activation), stimulate hair follicle development (β-catenin), and suppress apoptotic cues (Bcl-2 release and Akt activation).

Journal ArticleDOI
TL;DR: Recent advances in understanding the prosurvival function of JNK and its role in tumor development and chemoresistance are highlighted, including a comprehensive analysis of the molecular mechanisms underlying JNK‐mediated cancer cell survival.
Abstract: c-Jun N-terminal kinase (JNK) is involved in cancer cell apoptosis; however, emerging evidence indicates that this Janus signaling promotes cancer cell survival. JNK acts synergistically with NF-κB, JAK/STAT, and other signaling molecules to exert a survival function. JNK positively regulates autophagy to counteract apoptosis, and its effect on autophagy is related to the development of chemotherapeutic resistance. The prosurvival effect of JNK may involve an immune evasion mechanism mediated by transforming growth factor-β, toll-like receptors, interferon-γ, and autophagy, as well as compensatory JNK-dependent cell proliferation. The present review focuses on recent advances in understanding the prosurvival function of JNK and its role in tumor development and chemoresistance, including a comprehensive analysis of the molecular mechanisms underlying JNK-mediated cancer cell survival. There is a focus on the specific "Yin and Yang" functions of JNK1 and JNK2 in the regulation of cancer cell survival. We highlight recent advances in our knowledge of the roles of JNK in cancer cell survival, which may provide insight into the distinct functions of JNK in cancer and its potential for cancer therapy.

Journal ArticleDOI
TL;DR: These findings suggest that ADSC‐exos play a positive role in cutaneous wound healing possibly via Wnt/β‐catenin signaling and may provide new insights into the therapeutic target for cutaneous wounds healing.
Abstract: Cutaneous wounds, a type of soft tissue injury, are difficult to heal in aging. Differentiation, migration, proliferation, and apoptosis of skin cells are identified as key factors during wound healing processes. Mesenchymal stem cells have been documented as possible candidates for wound healing treatment because their use could augment the regenerative capacity of many tissues. However, the effects of exosomes derived from adipose-derived stem cell (ADSC-exos) on cutaneous wound healing remain to be carefully elucidated. In this present study, HaCaT cells were exposed to hydrogen peroxide (H2 O 2 ) for the establishment of the skin lesion model. Cell Counting Kit-8 assay, migration assay, and flow cytometry assay were conducted to detect the biological function of ADSC-exos in skin lesion model. Finally, the possible mechanism was further investigated using Western blot assay. The successful construction of the skin lesion model was confirmed by results of the enhanced cell apoptosis of HaCaT cells induced by H 2 O 2 , the increased Bax expression and decreased Bcl-2 expression. CD9 and CD63 expression evidenced the existence of ADSC-exos. The results of functional experiments demonstrated that ADSC-exos could prompt cell proliferation and migration of HaCaT cells, and repress cell apoptosis of HaCaT cells. In addition, the activation of Wnt/β-catenin signaling was confirmed by the enhanced expression of β-catenin at the protein level. Collectively, our findings suggest that ADSC-exos play a positive role in cutaneous wound healing possibly via Wnt/β-catenin signaling. Our study may provide new insights into the therapeutic target for cutaneous wound healing.

Journal ArticleDOI
TL;DR: It was shown that curcumin inhibits invasion and proliferation of cervical cancer cells via impairment of NF-kB and Wnt/β-catenin pathways, proposing further studies on the potential impacts of this compound on cancer therapy.
Abstract: Curcumin is a natural non-toxic phenol which is isolated from Curcumin longa L. Mounting evidence has revealed the anticancer properties of curcumin in various tumors, but the underlying molecular mechanisms of this suppression in cervical cancer is still remained unclear. Here we assessed the antitumor effects of curcumin compared with 5-Fluorouracil in Hella cells in spheroids models and monolayer cell cultures. The anti-proliferative effects of curcumin and 5-Fluorouracil were as examined in spheroid and monolayer models. The expression levels of Wnt/β-catenin and NF-kB pathways as well as the influence of the cell cycle were evaluated. Curcumin inhibited cell growth in Hella cells through the regulation of NF-kB and Wnt pathways. Also, cells developed a G2/M cell cycle arrest followed by sub-G1 apoptosis with 5-Fluorouracil and curcumin. It was also shown that curcumin either considerably affects the Wnt/β-catenin and NF-kB pathways. We showed that curcumin inhibits invasion and proliferation of cervical cancer cells via impairment of NF-kB and Wnt/β-catenin pathways, proposing further studies on the potential impacts of this compound on cancer therapy.

Journal ArticleDOI
TL;DR: The results suggest the critical role of circFGFR1 in the proliferation, migration, invasion, and immune evasion abilities of NSCLC cells and provide a new perspective on circRNAs duringNSCLC progression.
Abstract: Immune system evasion, distance tumor metastases, and increased cell proliferation are the main reasons for the progression of non-small cell lung cancer (NSCLC) and the death of NSCLC patients. Dysregulation of circular RNAs plays a critical role in the progression of NSCLC; therefore, further understanding the biological mechanisms of abnormally expressed circRNAs is critical to discovering novel, promising therapeutic targets for NSCLC treatment. The expression of circular RNA fibroblast growth factor receptor 1 (circFGFR1) in NSCLC tissues, paired nontumor tissues, and cell lines was detected by RT-qPCR. The role of circFGFR1 in NSCLC progression was assessed both in vitro by CCK-8, clonal formation, wound healing, and Matrigel Transwell assays and in vivo by a subcutaneous tumor mouse assay. In vivo circRNA precipitation, RNA immunoprecipitation, and luciferase reporter assays were performed to explore the interaction between circFGFR1 and miR-381-3p. Here, we report that circFGFR1 is upregulated in NSCLC tissues, and circFGFR1 expression is associated with deleterious clinicopathological characteristics and poor prognoses for NSCLC patients. Forced circFGFR1 expression promoted the migration, invasion, proliferation, and immune evasion of NSCLC cells. Mechanistically, circFGFR1 could directly interact with miR-381-3p and subsequently act as a miRNA sponge to upregulate the expression of the miR-381-3p target gene C-X-C motif chemokine receptor 4 (CXCR4), which promoted NSCLC progression and resistance to anti-programmed cell death 1 (PD-1)- based therapy. Taken together, our results suggest the critical role of circFGFR1 in the proliferation, migration, invasion, and immune evasion abilities of NSCLC cells and provide a new perspective on circRNAs during NSCLC progression.

Journal ArticleDOI
TL;DR: It is found that acetyl-CoA abundance is elevated in KRAS-mutant acinar cells and that its use in the mevalonate pathway supports acinar-to-ductal metaplasia (ADM), and a key role for the metabolic enzyme ACLY is identified in pancreatic carcinogenesis.
Abstract: Pancreatic ductal adenocarcinoma (PDA) has a poor prognosis, and new strategies for prevention and treatment are urgently needed. We previously reported that histone H4 acetylation is elevated in pancreatic acinar cells harboring Kras mutations prior to the appearance of premalignant lesions. Since acetyl-CoA abundance regulates global histone acetylation, we hypothesized that altered acetyl-CoA metabolism might contribute to metabolic or epigenetic alterations that promote tumorigenesis. We found that acetyl-CoA abundance is elevated in KRAS mutant acinar cells and that its use in the mevalonate pathway supports acinar-to-ductal metaplasia (ADM). Pancreas-specific loss of the acetyl-CoA producing enzyme ATP-citrate lyase (ACLY) accordingly suppresses ADM and tumor formation. In PDA cells, growth factors promote AKT-ACLY signaling and histone acetylation, and both cell proliferation and tumor growth can be suppressed by concurrent BET inhibition and statin treatment. Thus, KRAS-driven metabolic alterations promote acinar cell plasticity and tumor development, and targeting acetyl-CoA-dependent processes exerts anti-cancer effects.

Journal ArticleDOI
TL;DR: The expression of ALKBH5 was found to be increased in epithelial ovarian cancer tissue as compared to the normal ovarian tissues and was identified as a candidate oncogene in epithetic ovarian cancer and a potential target for ovarian cancer therapy.
Abstract: ALKBH5 regulated the malignant behavior of breast cancer and glioblastoma. However, the expression and function of ALKBH5 in epithelial ovarian cancer have not yet been determined. In the present study, we investigated the expression and function of ALKBH5 in epithelial ovarian cancer with respect to its potential role in the tumorigenesis of the disease as well as an early diagnostic marker. Immunohistochemistry and western blot were used to detect protein expression. Gene silencing and over-expression experiment were used to study gene function. Cell proliferation assay and Matrigel invasion assays were used to detect cell proliferation and invasion, respectively. The nude mouse tumor formation experiment was used to evaluate the growth of cells in vivo. The expression of ALKBH5 was found to be increased in epithelial ovarian cancer tissue as compared to the normal ovarian tissues. The silencing of ALKBH5 in SKOV3 cells enhanced the autophagy and inhibited the proliferation and invasion in vitro and in vivo, whereas the ectopic expression of ALKBH5 in A2780 cells exerted an opposite effect. Mechanical study revealed that ALKBH5 physically interacted with HuR. ALKBH5 activated EGFR-PIK3CA-AKT-mTOR signaling pathway. Also, ALKBH5 enhanced the stability of BCL-2 mRNA and promoted the interaction between Bcl-2 and Beclin1. Overall, the present study identified ALKBH5 as a candidate oncogene in epithelial ovarian cancer and a potential target for ovarian cancer therapy.

Journal ArticleDOI
TL;DR: This work identifies two islet-resident macrophage populations, characterized by their anatomical distributions, distinct phenotypes, and functional properties, and defines distinct roles and mechanisms for islet macrophages in the regulation of islet β cells.

Journal ArticleDOI
TL;DR: 3D cell cultures imitate the in vivo behaviour of neoplastic cells within the tumor, and suggest that 3D culture model is superior to 2D monolayers in the search for new therapeutic targets.
Abstract: Head and Neck Squamous Cell Carcinoma (HNSCC) tumors are often resistant to therapies. Therefore searching for predictive markers and new targets for treatment in clinically relevant in vitro tumor models is essential. Five HNSCC-derived cell lines were used to assess the effect of 3D culturing compared to 2D monolayers in terms of cell proliferation, response to anti-cancer therapy as well as expression of EMT and CSC genes. The viability and proliferation capacity of HNSCC cells as well as induction of apoptosis in tumor spheroids cells after treatment was assessed by MTT assay, crystal violet- and TUNEL assay respectively. Expression of EMT and CSC markers was analyzed on mRNA (RT-qPCR) and protein (Western blot) level. We showed that HNSCC cells from different tumors formed spheroids that differed in size and density in regard to EMT-associated protein expression and culturing time. In all spheroids, an up regulation of CDH1, NANOG and SOX2 was observed in comparison to 2D but changes in the expression of EGFR and EMT markers varied among the cell lines. Moreover, most HNSCC cells grown in 3D showed decreased sensitivity to cisplatin and cetuximab (anti-EGFR) treatment. Taken together, our study points at notable differences between these two cellular systems in terms of EMT-associated gene expression profile and drug response. As the 3D cell cultures imitate the in vivo behaviour of neoplastic cells within the tumor, our study suggest that 3D culture model is superior to 2D monolayers in the search for new therapeutic targets.

Journal ArticleDOI
TL;DR: It is argued that transitory disturbances to core activities, which are often linked to cell growth, promote a persister state regardless of the underlying physiological process responsible for the change in growth.
Abstract: Bacteria can withstand killing by bactericidal antibiotics through phenotypic changes mediated by their preexisting genetic repertoire. These changes can be exhibited transiently by a large fraction of the bacterial population, giving rise to tolerance, or displayed by a small subpopulation, giving rise to persistence. Apart from undermining the use of antibiotics, tolerant and persistent bacteria foster the emergence of antibiotic-resistant mutants. Persister formation has been attributed to alterations in the abundance of particular proteins, metabolites, and signaling molecules, including toxin-antitoxin modules, adenosine triphosphate, and guanosine (penta) tetraphosphate, respectively. Here, we report that persistent bacteria form as a result of slow growth alone, despite opposite changes in the abundance of such proteins, metabolites, and signaling molecules. Our findings argue that transitory disturbances to core activities, which are often linked to cell growth, promote a persister state regardless of the underlying physiological process responsible for the change in growth.

Journal ArticleDOI
TL;DR: It is highlighted that PD-1 expression in tumor-infiltrating TRM cells was positively correlated with features suggestive of active proliferation and superior functionality rather than dysfunction.
Abstract: High numbers of tissue-resident memory T (TRM) cells are associated with better clinical outcomes in cancer patients. However, the molecular characteristics that drive their efficient immune response to tumors are poorly understood. Here, single-cell and bulk transcriptomic analysis of TRM and non-TRM cells present in tumor and normal lung tissue from patients with lung cancer revealed that PD-1-expressing TRM cells in tumors were clonally expanded and enriched for transcripts linked to cell proliferation and cytotoxicity when compared with PD-1-expressing non-TRM cells. This feature was more prominent in the TRM cell subset coexpressing PD-1 and TIM-3, and it was validated by functional assays ex vivo and also reflected in their chromatin accessibility profile. This PD-1+TIM-3+ TRM cell subset was enriched in responders to PD-1 inhibitors and in tumors with a greater magnitude of CTL responses. These data highlight that not all CTLs expressing PD-1 are dysfunctional; on the contrary, TRM cells with PD-1 expression were enriched for features suggestive of superior functionality.

Journal ArticleDOI
TL;DR: Co-treatment with other chemotherapy drugs such as bortezomib, LY2940002, U0126, sunitinib, epirubicin, doxorubic in, temozolomide, and metformin enhances the anticancer potential of both formononetin and the respective drugs through synergistic effect.
Abstract: Cancer, a complex yet common disease, is caused by uncontrolled cell division and abnormal cell growth due to a variety of gene mutations. Seeking effective treatments for cancer is a major research focus, as the incidence of cancer is on the rise and drug resistance to existing anti-cancer drugs is major concern. Natural products have the potential to yield unique molecules and combinations of substances that may be effective against cancer with relatively low toxicity/better side effect profile compared to standard anticancer therapy. Drug discovery work with natural products has demonstrated that natural compounds display a wide range of biological activities correlating to anticancer effects. In this review, we discuss formononetin (C16H12O4), which originates mainly from red clovers and the Chinese herb Astragalus membranaceus. The compound comes from a class of 7-hydroisoflavones with a substitution of methoxy group at position 4. Formononetin elicits antitumorigenic properties in vitro and in vivo by modulating numerous signaling pathways to induce cell apoptosis (by intrinsic pathway involving Bax, Bcl-2, and caspase-3 proteins) and cell cycle arrest (by regulating mediators like cyclin A, cyclin B1, and cyclin D1), suppress cell proliferation [by signal transducer and activator of transcription (STAT) activation, phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT), and mitogen-activated protein kinase (MAPK) signaling pathway], and inhibit cell invasion [by regulating growth factors vascular endothelial growth factor (VEGF) and Fibroblast growth factor 2 (FGF2), and matrix metalloproteinase (MMP)-2 and MMP-9 proteins]. Co-treatment with other chemotherapy drugs such as bortezomib, LY2940002, U0126, sunitinib, epirubicin, doxorubicin, temozolomide, and metformin enhances the anticancer potential of both formononetin and the respective drugs through synergistic effect. Compiling the evidence thus far highlights the potential of formononetin to be a promising candidate for chemoprevention and chemotherapy.

Journal ArticleDOI
25 Sep 2019
TL;DR: In this article, the authors showed that LncRNA-XIST was aberrantly overexpressed in either NSCLC tissues or cell lines comparing to their paired control groups.
Abstract: LncRNA-XIST participated in the regulation of Non-small cell lung cancer (NSCLC) progression, but the underlying mechanisms are still unclear. This study showed that LncRNA-XIST aberrantly overexpressed in either NSCLC tissues or cell lines comparing to their paired control groups. Knock-down of LncRNA-XIST promoted NSCLC cell apoptosis and inhibited cell proliferation, which were reversed by synergistically treating cells with pyroptosis inhibitor Necrosulfonamide (NSA). In addition, knock-down of LncRNA-XIST also promoted reactive oxygen species (ROS) production and NLRP3 inflammasome activation. In parallel, ROS scavenger N-acetyl cysteine (NAC) abrogated the effects of downregulated LncRNA-XIST on NSCLC cell pyroptosis. Furthermore, miR-335 was the downstream target of LncRNA-XIST and overexpressed LncRNA-XIST increased SOD2 expression levels by sponging miR-335. Mechanistically, miR-335 inhibitor reversed the effects of downregulated LncRNA-XIST on ROS levels and cell pyroptosis, which were abrogated by synergistically knocking down SOD2. Taken together, knock-down of LncRNA-XIST inhibited NSCLC progression by triggering miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death.