scispace - formally typeset
Search or ask a question

Showing papers on "Histone H3 published in 2005"


Journal ArticleDOI
18 Nov 2005-Cell
TL;DR: Data indicate that Pol II-associated Set2 methylates H3 providing a transcriptional memory which signals for deacetylation of ORFs by Rpd3S, which erases transcription elongation-associated acetylation to suppress intragenic transcription initiation.

1,304 citations


Journal ArticleDOI
04 Aug 2005-Nature
TL;DR: H3K9me-mediated senescence is identified as a novel Suv39h1-dependent tumour suppressor mechanism whose inactivation permits the formation of aggressive but apoptosis-competent lymphomas in response to oncogenic Ras.
Abstract: Acute induction of oncogenic Ras provokes cellular senescence involving the retinoblastoma (Rb) pathway, but the tumour suppressive potential of senescence in vivo remains elusive. Recently, Rb-mediated silencing of growth-promoting genes by heterochromatin formation associated with methylation of histone H3 lysine 9 (H3K9me) was identified as a critical feature of cellular senescence, which may depend on the histone methyltransferase Suv39h1. Here we show that Emicro-N-Ras transgenic mice harbouring targeted heterozygous lesions at the Suv39h1, or the p53 locus for comparison, succumb to invasive T-cell lymphomas that lack expression of Suv39h1 or p53, respectively. By contrast, most N-Ras-transgenic wild-type ('control') animals develop a non-lymphoid neoplasia significantly later. Proliferation of primary lymphocytes is directly stalled by a Suv39h1-dependent, H3K9me-related senescent growth arrest in response to oncogenic Ras, thereby cancelling lymphomagenesis at an initial step. Suv39h1-deficient lymphoma cells grow rapidly but, unlike p53-deficient cells, remain highly susceptible to adriamycin-induced apoptosis. In contrast, only control, but not Suv39h1-deficient or p53-deficient, lymphomas senesce after drug therapy when apoptosis is blocked. These results identify H3K9me-mediated senescence as a novel Suv39h1-dependent tumour suppressor mechanism whose inactivation permits the formation of aggressive but apoptosis-competent lymphomas in response to oncogenic Ras.

1,164 citations


Journal ArticleDOI
22 Dec 2005-Nature
TL;DR: It is shown that HP1α, -β, and -γ are released from chromatin during the M phase of the cell cycle, even though tri-methylation levels of histone H3 lysine 9 remain unchanged, and a regulatory mechanism of protein–protein interactions is established through a combinatorial readout of two adjacent post-translational modifications: a stable methylation and a dynamic phosphorylation mark.
Abstract: Tri-methylation of histone H3 lysine 9 is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging and heterochromatin formation Here we show that HP1α, -β, and -γ are released from chromatin during the M phase of the cell cycle, even though tri-methylation levels of histone H3 lysine 9 remain unchanged However, the additional, transient modification of histone H3 by phosphorylation of serine 10 next to the more stable methyl-lysine 9 mark is sufficient to eject HP1 proteins from their binding sites Inhibition or depletion of the mitotic kinase Aurora B, which phosphorylates serine 10 on histone H3, causes retention of HP1 proteins on mitotic chromosomes, suggesting that H3 serine 10 phosphorylation is necessary for the dissociation of HP1 from chromatin in M phase These findings establish a regulatory mechanism of protein–protein interactions, through a combinatorial readout of two adjacent post-translational modifications: a stable methylation and a dynamic phosphorylation mark

990 citations


Journal ArticleDOI
17 Jun 2005-Cell
TL;DR: The results are the first demonstration that a WD40-repeat protein acts as a module for recognition of a specific histone modification and suggest a mechanism for reading and writing an epigenetic mark for gene activation.

820 citations


Journal ArticleDOI
18 Nov 2005-Cell
TL;DR: Ch Chromatin immunoprecipitation and biochemical experiments indicate that the chromodomain of Eaf3 recruits Rpd3C(S) to nucleosomes methylated by Set2 on histone H3 lysine 36, leading to deacetylation of transcribed regions.

815 citations


Journal ArticleDOI
22 Apr 2005-Cell
TL;DR: It is reported that hDOT1L interacts with AF10, an MLL (mixed lineage leukemia) fusion partner involved in acute myeloid leukemia, through the OM-LZ region of AF10 required for MLL-AF10-mediated leukemogenesis, and suggests that the enzymatic activity of hDot1L may provide a potential target for therapeutic intervention.

778 citations


Journal ArticleDOI
TL;DR: It is revealed that G9a and GLP cooperatively exert H3-K9 methyltransferase function in vivo, likely through the formation of higher-order heteromeric complexes.
Abstract: Histone H3 Lys 9 (H3-K9) methylation is a crucial epigenetic mark for transcriptional silencing. G9a is the major mammalian H3-K9 methyltransferase that targets euchromatic regions and is essential for murine embryogenesis. There is a single G9a-related methyltransferase in mammals, called GLP/Eu-HMTase1. Here we show that GLP is also important for H3-K9 methylation of mouse euchromatin. GLP-deficiency led to embryonic lethality, a severe reduction of H3-K9 mono- and dimethylation, the induction of Mage-a gene expression, and HP1 relocalization in embryonic stem cells, all of which were phenotypes of G9a-deficiency. Furthermore, we show that G9a and GLP formed a stoichiometric heteromeric complex in a wide variety of cell types. Biochemical analyses revealed that formation of the G9a/GLP complex was dependent on their enzymatic SET domains. Taken together, our new findings revealed that G9a and GLP cooperatively exert H3-K9 methyltransferase function in vivo, likely through the formation of higher-order heteromeric complexes.

755 citations


Journal ArticleDOI
21 Oct 2005-Cell
TL;DR: In S. cerevisiae, histone variant H2A.Z is deposited in euchromatin at the flanks of silent heterochromatin to prevent its ectopic spread and enrichment at 5' ends is observed not only at actively transcribed genes but also at inactive loci.

710 citations


Journal ArticleDOI
22 Dec 2005-Nature
TL;DR: It is shown that antibodies against mitotic chromosomal antigens that are associated with human autoimmune diseases specifically recognize H3 molecules that are modified by both tri-methylation of lysine’9 and phosphorylation of serine 10 (H3K9me3S10ph).
Abstract: Histones are subject to numerous post-translational modifications. Some of these 'epigenetic' marks recruit proteins that modulate chromatin structure. For example, heterochromatin protein 1 (HP1) binds to histone H3 when its lysine 9 residue has been tri-methylated by the methyltransferase Suv39h (refs 2-6). During mitosis, H3 is also phosphorylated by the kinase Aurora B. Although H3 phosphorylation is a hallmark of mitosis, its function remains mysterious. It has been proposed that histone phosphorylation controls the binding of proteins to chromatin, but any such mechanisms are unknown. Here we show that antibodies against mitotic chromosomal antigens that are associated with human autoimmune diseases specifically recognize H3 molecules that are modified by both tri-methylation of lysine 9 and phosphorylation of serine 10 (H3K9me3S10ph). The generation of H3K9me3S10ph depends on Suv39h and Aurora B, and occurs at pericentric heterochromatin during mitosis in different eukaryotes. Most HP1 typically dissociates from chromosomes during mitosis, but if phosphorylation of H3 serine 10 is inhibited, HP1 remains chromosome-bound throughout mitosis. H3 phosphorylation by Aurora B is therefore part of a 'methyl/phos switch' mechanism that displaces HP1 and perhaps other proteins from mitotic heterochromatin.

664 citations


Journal ArticleDOI
TL;DR: The data suggest that TFL2/LHP1 recognizes specifically H3K27me3 in vivo as part of a mechanism that represses the expression of many genes targeted by PRC2.
Abstract: TERMINAL FLOWER 2/LIKE HETEROCHROMATIN PROTEIN 1 (TFL2/LHP1) is the only Arabidopsis protein with overall sequence similarity to the HETEROCHROMATIN PROTEIN 1 (HP1) family of metazoans and S. pombe. TFL2/LHP1 represses transcription of numerous genes, including the flowering-time genes FLOWERING LOCUS T (FT) and FLOWERING LOCUS C (FLC), as well as the floral organ identity genes AGAMOUS (AG) and APETALA 3 (AP3). These genes are also regulated by proteins of the Polycomb repressive complex 2 (PRC2), and it has been proposed that TFL2/LHP1 represents a potential stabilizing factor of PRC2 activity. Here we show by chromatin immunoprecipitation and hybridization to an Arabidopsis Chromosome 4 tiling array (ChIP-chip) that TFL2/LHP1 associates with hundreds of small domains, almost all of which correspond to genes located within euchromatin. We investigated the chromatin marks to which TFL2/LHP1 binds and show that, in vitro, TFL2/LHP1 binds to histone H3 di- or tri-methylated at lysine 9 (H3K9me2 or H3K9me3), the marks recognized by HP1, and to histone H3 trimethylated at lysine 27 (H3K27me3), the mark deposited by PRC2. However, in vivo TFL2/LHP1 association with chromatin occurs almost exclusively and co-extensively with domains marked by H3K27me3, but not H3K9me2 or -3. Moreover, the distribution of H3K27me3 is unaffected in lhp1 mutant plants, indicating that unlike PRC2 components, TFL2/LHP1 is not involved in the deposition of this mark. Rather, our data suggest that TFL2/LHP1 recognizes specifically H3K27me3 in vivo as part of a mechanism that represses the expression of many genes targeted by PRC2.

577 citations


Journal ArticleDOI
22 Dec 2005-Nature
TL;DR: It is shown that the human CHD1 double chromodomains target the lysine 4-methylated histone H3 tail (H3K4me), a hallmark of active chromatin, and its interactions with histone tails.
Abstract: Chromodomains are modules implicated in the recognition of lysine-methylated histone tails and nucleic acids1,2. CHD (for chromo-ATPase/helicase-DNA-binding) proteins regulate ATP-dependent nucleosome assembly and mobilization through their conserved double chromodomains and SWI2/SNF2 helicase/ATPase domain3,4,5. The Drosophila CHD1 localizes to the interb ands and puffs of the polytene chromosomes, which are classic sites of transcriptional activity6. Other CHD isoforms (CHD3/4 or Mi-2) are important for nucleosome remodelling in histone deacetylase complexes7,8. Deletion of chromodomains impairs nucleosome binding and remodelling by CHD proteins4. Here we describe the structure of the tandem arrangement of the human CHD1 chromodomains, and its interactions with histone tails. Unlike HP1 and Polycomb proteins that use single chromodomains to bind to their respective methylated histone H3 tails, the two chromodomains of CHD1 cooperate to interact with one methylated H3 tail. We show that the human CHD1 double chromodomains target the lysine 4-methylated histone H3 tail (H3K4me), a hallmark of active chromatin9. Methylammonium recognition involves two aromatic residues, not the three-residue aromatic cage used by chromodomains of HP1 and Polycomb proteins10,11,12,13. Furthermore, unique inserts within chromodomain 1 of CHD1 block the expected site of H3 tail binding seen in HP1 and Polycomb, instead directing H3 binding to a groove at the inter-chromodomain junction.

Journal ArticleDOI
27 Jan 2005-Nature
TL;DR: The chromatin remodelling protein Chd1 (chromo-ATPase/helicase-DNA binding domain 1) is identified as a component of SAGA and SLIK and this study identifies the first chromodomain that recognizes methylated histone H3 (Lys 4) and possibly identifies a larger subfamily of chromODomain proteins with similar recognition properties.
Abstract: The specific post-translational modifications to histones influence many nuclear processes including gene regulation, DNA repair and replication. Recent studies have identified effector proteins that recognize patterns of histone modification and transduce their function in downstream processes. For example, histone acetyltransferases (HATs) have been shown to participate in many essential cellular processes, particularly those associated with activation of transcription. Yeast SAGA (Spt-Ada-Gcn5 acetyltransferase) and SLIK (SAGA-like) are two highly homologous and conserved multi-subunit HAT complexes, which preferentially acetylate histones H3 and H2B and deubiquitinate histone H2B. Here we identify the chromatin remodelling protein Chd1 (chromo-ATPase/helicase-DNA binding domain 1) as a component of SAGA and SLIK. Our findings indicate that one of the two chromodomains of Chd1 specifically interacts with the methylated lysine 4 mark on histone H3 that is associated with transcriptional activity. Furthermore, the SLIK complex shows enhanced acetylation of a methylated substrate and this activity is dependent upon a functional methyl-binding chromodomain, both in vitro and in vivo. Our study identifies the first chromodomain that recognizes methylated histone H3 (Lys 4) and possibly identifies a larger subfamily of chromodomain proteins with similar recognition properties.

Journal ArticleDOI
TL;DR: It is reported that in humans, the 600 kDa RNF20/40 complex is the E3 ligase and UbcH6 is the ubiquitin E2-conjugating enzyme for H2B-Lys120 monoubiquitination, and the hPAF complex is recruited to transcriptionally active genes in vivo.

Journal ArticleDOI
TL;DR: A chromatin immunoprecipitation protocol developed for A. thaliana is described that permits, in combination with hybridization to genomic tiling microarrays, the mapping of histone modifications with high resolution along large genomic regions(5).
Abstract: In eukaryotes, the processes of transcription, replication and homologous recombination occur in the context of chromatin. Although tightly packed, this structure is highly dynamic, being modified through the action of many enzymatic activities that reorganize nucleosomes; covalently modify histones through acetylation, phosphorylation, methylation and so on; exchange histones with variants; and in many eukaryotes, including plants and mammals, methylate DNA residues(1). Transcriptional activity is usually associated with hyperacetylation of histones tails as well as with di- or trimethylation of Lys4 in histone H3. Conversely, silent chromatin typically correlates with histone hypoacetylation and di- or trimethylation of histone H3 Lys9 (refs. 2,3). Because of its small genome, Arabidopsis thaliana serves as a powerful system for understanding the role of various histone modifications in a complex organism, notably in association with DNA methylation and in relation to the epigenetic inheritance of silent chromatin(4). Here we describe a chromatin immunoprecipitation (ChIP) protocol developed for A. thaliana that permits, in combination with hybridization to genomic tiling microarrays, the mapping of histone modifications with high resolution along large genomic regions(5). After cross-linking, chromatin is immunoprecipitated using antibodies directed against specific histone modifications. DNA recovered from the precipitate is amplified, Labeled, hybridized to microarrays and compared to total DNA. This protocol has been used successfully to map histone H3 methylated at Lys4 or Lys9 across a 1.5-Mb region(5) and should have broad applications in plants and other organisms. A protocol that outlines the profiling of DNA methylation patterns at similar high resolution has also been developed(6).

Journal ArticleDOI
14 Oct 2005-Science
TL;DR: It is shown that Akt phosphorylates EZH2 at serine 21 and suppresses its methyltransferase activity by impeding EZh2 binding to histone H3, which results in a decrease of lysine 27 trimethylation and derepression of silenced genes.
Abstract: Enhancer of Zeste homolog 2 (EZH2) is a methyltransferase that plays an important role in many biological processes through its ability to trimethylate lysine 27 in histone H3. Here, we show that Akt phosphorylates EZH2 at serine 21 and suppresses its methyltransferase activity by impeding EZH2 binding to histone H3, which results in a decrease of lysine 27 trimethylation and derepression of silenced genes. Our results imply that Akt regulates the methylation activity, through phosphorylation of EZH2, which may contribute to oncogenesis.

Journal ArticleDOI
TL;DR: It is determined that deletion of SET2, its SRI domain, or amino acid substitutions at K36 result in an alteration of RNAPII occupancy levels over transcribing genes, which indicates K36 methylation, established by the Sri domain-mediated association of Set2 with RNAP II, plays an important role in the transcription elongation process.
Abstract: Histone methylation and the enzymes that mediate it are important regulators of chromatin structure and gene transcription. In particular, the histone H3 lysine 36 (K36) methyltransferase Set2 has recently been shown to associate with the phosphorylated C-terminal domain (CTD) of RNA polymerase II (RNAPII), implying that this enzyme has an important role in the transcription elongation process. Here we show that a novel domain in the C terminus of Set2 is responsible for interaction between Set2 and RNAPII. This domain, termed the Set2 Rpb1 interacting (SRI) domain, is encompassed by amino acid residues 619 to 718 in Set2 and is found to occur in a number of putative Set2 homologs from Schizosaccharomyces pombe to humans. Unexpectedly, BIACORE analysis reveals that the SRI domain binds specifically, and with high affinity, to CTD repeats that are doubly modified (serine 2 and serine 5 phosphorylated), indicating that Set2 association across the body of genes requires a specific pattern of phosphorylated RNAPII. Deletion of the SRI domain not only abolishes Set2-RNAPII interaction but also abolishes K36 methylation in vivo, indicating that this interaction is required for establishing K36 methylation on chromatin. Using 6-azauracil (6AU) as an indicator of transcription elongation defects, we found that deletion of the SRI domain conferred a strong resistance to this compound, which was identical to that observed with set2 deletion mutants. Furthermore, yeast strains carrying set2 alleles that are catalytically inactive or yeast strains bearing point mutations at K36 were also found to be resistant to 6AU. These data suggest that it is the methylation by Set2 that affects transcription elongation. In agreement with this, we have determined that deletion of SET2, its SRI domain, or amino acid substitutions at K36 result in an alteration of RNAPII occupancy levels over transcribing genes. Taken together, these data indicate K36 methylation, established by the SRI domain-mediated association of Set2 with RNAPII, plays an important role in the transcription elongation process.

Journal ArticleDOI
17 Nov 2005-Nature
TL;DR: It is shown that Meisetz (meiosis-induced factor containing a PR/SET domain and zinc-finger motif) is a histone methyltransferase that is important for the progression of early meiotic prophase.
Abstract: Meiosis is a unique cell division that is necessary for sexual reproduction; it produces functional haploid gametes and shuffles genomic information. Progression through meiosis is controlled by the proper orchestration of a number of meiotic genes. A candidate gene for regulating meiotic gene expression has now been identified. Meisetz, encoding a meiosis-specific histone H3 lysine 4-specific trimethyltransferase, is essential for meiotic recombination between homologous chromosomes in mice. Meisetz has essential functions in spermatocytes through epigenetic modification of chromatin, the first instance of a gene regulating epigenetic control of gene expression during meiotic progression. Epigenetic modifications of histones regulate gene expression and chromatin structure1,2. Here we show that Meisetz (meiosis-induced factor containing a PR/SET domain and zinc-finger motif) is a histone methyltransferase that is important for the progression of early meiotic prophase. Meisetz transcripts are detected only in germ cells entering meiotic prophase in female fetal gonads and in postnatal testis. Notably, Meisetz has catalytic activity for trimethylation, but not mono- or dimethylation, of lysine 4 of histone H3, and a transactivation activity that depends on its methylation activity. Mice in which the Meisetz gene is disrupted show sterility in both sexes due to severe impairment of the double-stranded break repair pathway, deficient pairing of homologous chromosomes and impaired sex body formation. In Meisetz-deficient testis, trimethylation of lysine 4 of histone H3 is attenuated and meiotic gene transcription is altered. These findings indicate that meiosis-specific epigenetic events in mammals are crucial for proper meiotic progression.

Journal ArticleDOI
06 May 2005-Cell
TL;DR: Findings indicate that histone H3 K56 acetylation at the entry-exit gate enables recruitment of the SWI/SNF nucleosome remodeling complex and so regulates gene activity.

Journal ArticleDOI
TL;DR: The findings indicate that yeast and human CHD1 have diverged in their ability to discriminate covalently modified histones and link histone modification-recognition and non-covalent chromatin remodeling activities within a single human protein.

Journal ArticleDOI
TL;DR: The data suggest that the unique spatial distribution of di- and tri-Me K36/H3 plays a role in transcriptional termination and/or early RNA processing in higher eukaryotes.

Journal ArticleDOI
TL;DR: Here, it is demonstrated that unlike Suz12 and Ezh2, Eed is required not only for 2m- and 3mH3K27 but also global 1mH2K27, which provides a functionally important distinction between PRC2 complex components and implicate Eed inPRC2-independent histone methylation.

Journal ArticleDOI
TL;DR: It is shown that menin-dependent histone methylation maintains the in vivo expression of cyclin- dependent kinase (CDK) inhibitors to prevent pancreatic islet tumors and suggests an epigenetic mechanism of tumor suppression.
Abstract: Menin, the product of the Men1 gene mutated in familial multiple endocrine neoplasia type 1 (MEN1), regulates transcription in differentiated cells. Menin associates with and modulates the histone methyltransferase activity of a nuclear protein complex to activate gene expression. However, menin-dependent histone methyltransferase activity in endocrine cells has not been demonstrated, and the mechanism of endocrine tumor suppression by menin remains unclear. Here, we show that menin-dependent histone methylation maintains the in vivo expression of cyclin-dependent kinase (CDK) inhibitors to prevent pancreatic islet tumors. In vivo expression of CDK inhibitors, including p27 and p18, and other cell cycle regulators is disrupted in mouse islet tumors lacking menin. Chromatin immunoprecipitation studies reveal that menin directly associates with regions of the p27 and p18 promoters and increases methylation of lysine 4 (Lys-4) in histone H3 associated with these promoters. Moreover, H3 Lys-4 methylation associated with p27 and p18 is reduced in islet tumors from Men1 mutant mice. Thus, H3 Lys-4 methylation is a crucial function of menin in islet tumor suppression. These studies suggest an epigenetic mechanism of tumor suppression: by promoting histone modifications, menin maintains transcription at multiple loci encoding cell cycle regulators essential for endocrine growth control.

Journal ArticleDOI
TL;DR: The ability of MLL1 to serve as a start site-specific global transcriptional regulator and to participate in larger chromatin domains at the Hox genes reveals dual roles for M LL1 in maintenance of cellular identity.
Abstract: The mixed-lineage leukemia (MLL1/ALL-1/HRX) histone methyltransferase is involved in the epigenetic maintenance of transcriptional memory and the pathogenesis of human leukemias. To understand its role in cell type specification, we determined the human genomic binding sites of MLL1. We found that MLL1 functions as a human equivalent of yeast Set1. Like Set1, MLL1 localizes with RNA polymerase II (Pol II) to the 5′ end of actively transcribed genes, where histone H3 lysine 4 trimethylation occurs. Consistent with this global role in transcription, MLL1 also localizes to microRNA (miRNA) loci that are involved in leukemia and hematopoiesis. In contrast to the 5′ proximal binding behavior at most protein-coding genes, MLL1 occupies an extensive domain within a transcriptionally active region of the HoxA cluster. The ability of MLL1 to serve as a start site-specific global transcriptional regulator and to participate in larger chromatin domains at the Hox genes reveals dual roles for MLL1 in maintenance of cellular identity.

Journal ArticleDOI
15 Feb 2005-Blood
TL;DR: LBH589, a novel cinnamic hydroxamic acid analog histone deacetylase inhibitor, induces acetylation of histone H3 and H4 and of heat shock protein 90, increases p21 levels, as well as induces cell-cycle G(1) phase accumulation and apoptosis of the human chronic myeloid leukemia blast crisis K562 cells and acute leukemia MV4-11 cells with the activating length mutation of FLT-3.

Journal ArticleDOI
TL;DR: A new kinase involved in composing the histone code is revealed and haspin is added to the select group of kinases that integrate regulation of chromosome and spindle function during mitosis and meiosis.
Abstract: Post-translational modifications of conserved N-terminal tail residues in histones regulate many aspects of chromosome activity. Thr 3 of histone H3 is highly conserved, but the significance of its phosphorylation is unclear, and the identity of the corresponding kinase unknown. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation of H3 Thr 3 in prophase and its dephosphorylation during anaphase. Furthermore we find that haspin, a member of a distinctive group of protein kinases present in diverse eukaryotes, phosphorylates H3 at Thr 3 in vitro. Importantly, depletion of haspin by RNA interference reveals that this kinase is required for H3 Thr 3 phosphorylation in mitotic cells. In addition to its chromosomal association, haspin is found at the centrosomes and spindle during mitosis. Haspin RNA interference causes misalignment of metaphase chromosomes, and overexpression delays progression through early mitosis. This work reveals a new kinase involved in composing the histone code and adds haspin to the select group of kinases that integrate regulation of chromosome and spindle function during mitosis and meiosis.

Journal ArticleDOI
TL;DR: Comparisons of the effects of tethering two H3-K9-specific histone methyltransferases to chromatin on transcription and HP1 recruitment indicate that H2K9 methylation alone can suppress transcription but is insufficient forHP1 recruitment in the context of chromatin, exemplifying the importance of Chromatin-associated factors in reading the histone code.
Abstract: Histone H3 lysine 9 (H3-K9) methylation has been shown to correlate with transcriptional repression and serve as a specific binding site for heterochromatin protein 1 (HP1). In this study, we investigated the relationship between H3-K9 methylation, transcriptional repression, and HP1 recruitment by comparing the effects of tethering two H3-K9-specific histone methyltransferases, SUV39H1 and G9a, to chromatin on transcription and HP1 recruitment. Although both SUV39H1 and G9a induced H3-K9 methylation and repressed transcription, only SUV39H1 was able to recruit HP1 to chromatin. Targeting HP1 to chromatin required not only K9 methylation but also a direct protein-protein interaction between SUV39H1 and HP1. Targeting methyl-K9 or a HP1-interacting region of SUV39H1 alone to chromatin was not sufficient to recruit HP1. We also demonstrate that methyl-K9 can suppress transcription independently of HP1 through a mechanism involving histone deacetylation. In an effort to understand how H3-K9 methylation led to histone deacetylation in both H3 and H4, we found that H3-K9 methylation inhibited histone acetylation by p300 but not its association with chromatin. Collectively, these data indicate that H3-K9 methylation alone can suppress transcription but is insufficient for HP1 recruitment in the context of chromatin exemplifying the importance of chromatin-associated factors in reading the histone code. In eukaryotic cells, DNA is tightly associated with histones and other factors to form chromatin. The nucleosome is the basic building block of chromatin and consists of approximately 150 bp of DNA coiled around an octamer of histones. The histone octamer contains two copies of each of the core histones, H2A, H2B, H3, and H4. The N-terminal region of each core histone is unstructured when crystallized and therefore is likely to be a highly dynamic structure. These histone tails protrude out from the globular center of the nucleosome where they may interact with nuclear factors. The N-terminal tails are subject to a variety of posttranslational modifications, including phosphorylation, acetylation, methylation, and ubiquitylation. These modifications affect the binding of proteins to the histone tails and thus regulate the nature of the protein complexes that will associate with a region of chromatin. The ability of proteins to specifically associate with certain histone modifications is the basis of the histone code theory (15, 48). According to this theory, specific proteins will associate with histone tails containing certain modifications. These proteins may function to activate or inhibit transcription or serve to maintain a specific chromatin structure. The best-studied histone modifications are acetylation and methylation. Histone acetylation is generally associated with regions of active transcription. Many transcriptional coactivators contain histone acetyltransferase (HAT) activity, including CBP/p300 (3, 35), the p160 family (46), and P/CAF (63). While arginine methylation of H3 and H4 is associated with transcriptional activation, lysine methylation of histones may have positive or negative effects on transcription, depending on the methylation site(s) (18). Methylation of H3-K9 and H3-K27 is generally associated with repression, whereas methylation of H3-K4, -K36, and -K79 has been implicated in the transcriptional activation process (19, 30, 34, 43, 60). Indeed, the arginine methyltransferases, coactivator-associated arginine methyltransferase 1 (5) and PRMT1 (17), are transcriptional coactivators, while H3-K9 methyltransferases, such as SUV39H1 and G9a (10, 40, 43, 50, 52), are repressors.

Journal ArticleDOI
TL;DR: A role for Rad6 and H2B ubiquitylation during the elongation cycle of transcription is indicated and a mechanism by which H3 methylation may be regulated is suggested.
Abstract: Rad6-mediated ubiquitylation of histone H2B at lysine 123 has been linked to transcriptional activation and the regulation of lysine methylation on histone H3. However, how Rad6 and H2B ubiquitylation contribute to the transcription and histone methylation processes is poorly understood. Here, we show that the Paf1 transcription elongation complex and the E3 ligase for Rad6, Bre1, mediate an association of Rad6 with the hyperphosphorylated (elongating) form of RNA polymerase II (Pol II). This association appears to be necessary for the transcriptional activities of Rad6, as deletion of various Paf1 complex members or Bre1 abolishes H2B ubiquitylation (ubH2B) and reduces the recruitment of Rad6 to the promoters and transcribed regions of active genes. Using the inducible GAL1 gene as a model, we find that the recruitment of Rad6 upon activation occurs rapidly and transiently across the gene and coincides precisely with the appearance of Pol II. Significantly, during GAL1 activation in an rtf1 deletion mutant, Rad6 accumulates at the promoter but is absent from the transcribed region. This fact suggests that Rad6 is recruited to promoters independently of the Paf1 complex but then requires this complex for entrance into the coding region of genes in a Pol II-associated manner. In support of a role for Rad6-dependent H2B ubiquitylation in transcription elongation, we find that ubH2B levels are dramatically reduced in strains bearing mutations of the Pol II C-terminal domain (CTD) and abolished by inactivation of Kin28, the serine 5 CTD kinase that promotes the transition from initiation to elongation. Furthermore, synthetic genetic array analysis reveals that the Rad6 complex interacts genetically with a number of known or suspected transcription elongation factors. Finally, we show that Saccharomyces cerevisiae mutants bearing defects in the pathway to H2B ubiquitylation display transcription elongation defects as assayed by 6-azauracil sensitivity. Collectively, our results indicate a role for Rad6 and H2B ubiquitylation during the elongation cycle of transcription and suggest a mechanism by which H3 methylation may be regulated.

Journal ArticleDOI
TL;DR: The male, in contrast to female G1 chromatin, is uniform and contains predominantly hist one H3.3 as histone H3 variant, while the maternal genome is arrested in meiotic metaphase II.

Journal ArticleDOI
TL;DR: It is concluded that H3.3 deposition is coupled to transcription, and continues while a gene is active, and repeated histone replacement suggests a mechanism to both maintain the structure of chromatin and access to DNA at active genes.
Abstract: DNA in eukaryotic cells is packaged into nucleosomes, the structural unit of chromatin. Both DNA and bulk histones are extremely long-lived, because old DNA strands and histones are retained when chromatin duplicates. In contrast, we find that the Drosophila HSP70 genes rapidly lose histone H3 and acquire variant H3.3 histones as they are induced. Histone replacement does not occur at artificial HSP70 promoter arrays, demonstrating that transcription is required for H3.3 deposition. The H3.3 histone is enriched in all active chromatin and throughout large transcription units, implying that deposition occurs during transcription elongation. Strikingly, we observed that the stability of chromatin-bound H3.3 differs between loci: H3.3 turns over at continually active rDNA genes, but becomes stable at induced HSP70 genes that have shut down. We conclude that H3.3 deposition is coupled to transcription, and continues while a gene is active. Repeated histone replacement suggests a mechanism to both maintain the structure of chromatin and access to DNA at active genes.

Journal ArticleDOI
27 Oct 2005-Nature
TL;DR: It is shown that ssm is a point mutation in the Hira gene, thus demonstrating that the histone chaperone protein HIRA is required for nucleosome assembly during sperm nucleus decondensation, and that nucleosomes containing H3.3, and not H3, are specifically assembled in paternal Drosophila chromatin before the first round of DNA replication.
Abstract: In sexually reproducing animals, a crucial step in zygote formation is the decondensation of the fertilizing sperm nucleus into a DNA replication-competent male pronucleus. Genome-wide nucleosome assembly on paternal DNA implies the replacement of sperm chromosomal proteins, such as protamines, by maternally provided histones1,2. This fundamental process is specifically impaired in sesame (ssm), a unique Drosophila maternal effect mutant that prevents male pronucleus formation3. Here we show that ssm is a point mutation in the Hira gene, thus demonstrating that the histone chaperone protein HIRA is required for nucleosome assembly during sperm nucleus decondensation. In vertebrates, HIRA has recently been shown to be critical for a nucleosome assembly pathway independent of DNA synthesis that specifically involves the H3.3 histone variant4,5. We also show that nucleosomes containing H3.3, and not H3, are specifically assembled in paternal Drosophila chromatin before the first round of DNA replication. The exclusive marking of paternal chromosomes with H3.3 represents a primary epigenetic distinction between parental genomes in the zygote, and underlines an important consequence of the critical and highly specialized function of HIRA at fertilization.